Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in arabidopsis.

Bömer M, O'Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A.

Ann Bot. 2018 Dec 31;122(7):1117-1129. doi: 10.1093/aob/mcy109.

2.

Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

Bahar O, Mordukhovich G, Luu DD, Schwessinger B, Daudi A, Jehle AK, Felix G, Ronald PC.

Mol Plant Microbe Interact. 2016 May;29(5):374-84. doi: 10.1094/MPMI-12-15-0270-R. Epub 2016 Mar 29.

3.

The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium.

Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJ, Luu DD, Chen H, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang W, Zhao X, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC.

Sci Adv. 2015 Jul 24;1(6):e1500245. doi: 10.1126/sciadv.1500245. eCollection 2015 Jul.

4.

Correction: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.

Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas PE, Daudi A, Petzold CJ, Singan VR, Kuo R, Chovatia M, Daum C, Heazlewood JL, Zipfel C, Ronald PC.

PLoS Pathog. 2015 Apr 23;11(4):e1004872. doi: 10.1371/journal.ppat.1004872. eCollection 2015 Apr.

5.

Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.

Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas PE, Daudi A, Petzold CJ, Singan VR, Kuo R, Chovatia M, Daum C, Heazlewood JL, Zipfel C, Ronald PC.

PLoS Pathog. 2015 Mar 30;11(3):e1004809. doi: 10.1371/journal.ppat.1004809. eCollection 2015 Mar. Erratum in: PLoS Pathog. 2015 Apr;11(4):e1004872. Thomas, Nicolas [corrected to Thomas, Nicholas].

6.

Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

Mammarella ND, Cheng Z, Fu ZQ, Daudi A, Bolwell GP, Dong X, Ausubel FM.

Phytochemistry. 2015 Apr;112:110-21. doi: 10.1016/j.phytochem.2014.07.010. Epub 2014 Aug 2.

7.

The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles.

Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, Liu F, Ruan R, Fontaine-Bodin L, Koebnik R, Ronald P.

PeerJ. 2014 Jan 7;2:e242. doi: 10.7717/peerj.242. eCollection 2014.

8.

An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors.

Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ, Heazlewood JL, Ronald PC.

Mol Plant. 2014 May;7(5):874-92. doi: 10.1093/mp/ssu003. Epub 2014 Jan 30.

9.

Reactive oxygen species and their role in plant defence and cell wall metabolism.

O'Brien JA, Daudi A, Butt VS, Bolwell GP.

Planta. 2012 Sep;236(3):765-79. doi: 10.1007/s00425-012-1696-9. Epub 2012 Jul 6. Review.

PMID:
22767200
10.

A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense.

O'Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP.

Plant Physiol. 2012 Apr;158(4):2013-27. doi: 10.1104/pp.111.190140. Epub 2012 Feb 7.

11.

The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.

Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP.

Plant Cell. 2012 Jan;24(1):275-87. doi: 10.1105/tpc.111.093039. Epub 2012 Jan 13.

12.

Detection of Hydrogen Peroxide by DAB Staining in Arabidopsis Leaves.

Daudi A, O'Brien JA.

Bio Protoc. 2012;2(18). pii: e263. Epub 2012 Sep 20.

13.

Transcriptional changes related to secondary wall formation in xylem of transgenic lines of tobacco altered for lignin or xylan content which show improved saccharification.

Cook CM, Daudi A, Millar DJ, Bindschedler LV, Khan S, Bolwell GP, Devoto A.

Phytochemistry. 2012 Feb;74:79-89. doi: 10.1016/j.phytochem.2011.10.009. Epub 2011 Nov 25.

14.

A combined ¹H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp.

Lowe RG, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE.

Mol Plant Microbe Interact. 2010 Dec;23(12):1605-18. doi: 10.1094/MPMI-04-10-0092.

15.

Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants.

Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K.

Plant Physiol. 2010 Jul;153(3):1161-74. doi: 10.1104/pp.110.157347. Epub 2010 May 13.

16.

Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification.

Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA.

Phytochemistry. 2010 Apr;71(5-6):531-42. doi: 10.1016/j.phytochem.2010.01.008. Epub 2010 Feb 17.

PMID:
20170931
17.

Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis.

Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y.

Mol Syst Biol. 2008;4:193. doi: 10.1038/msb.2008.32. Epub 2008 May 6.

Supplemental Content

Support Center