Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Validation of slow off-kinetics of Sirtuin Rearranging Ligands (SirReals) by means of the label-free electrically switchable nanolever technology.

Schiedel M, Daub H, Itzen A, Jung M.

Chembiochem. 2019 Nov 6. doi: 10.1002/cbic.201900527. [Epub ahead of print]

PMID:
31692222
2.

A DNA-Based Biosensor Assay for the Kinetic Characterization of Ion-Dependent Aptamer Folding and Protein Binding.

Ponzo I, Möller FM, Daub H, Matscheko N.

Molecules. 2019 Aug 8;24(16). pii: E2877. doi: 10.3390/molecules24162877.

3.

Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy.

Blocquel D, Li S, Wei N, Daub H, Sajish M, Erfurth ML, Kooi G, Zhou J, Bai G, Schimmel P, Jordanova A, Yang XL.

Nucleic Acids Res. 2017 Jul 27;45(13):8091-8104. doi: 10.1093/nar/gkx455.

4.

Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation.

Maciejowski J, Drechsler H, Grundner-Culemann K, Ballister ER, Rodriguez-Rodriguez JA, Rodriguez-Bravo V, Jones MJK, Foley E, Lampson MA, Daub H, McAinsh AD, Jallepalli PV.

Dev Cell. 2017 Apr 24;41(2):143-156.e6. doi: 10.1016/j.devcel.2017.03.025.

5.

Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling.

Wandinger SK, Lahortiga I, Jacobs K, Klammer M, Jordan N, Elschenbroich S, Parade M, Jacoby E, Linders JT, Brehmer D, Cools J, Daub H.

PLoS One. 2016 Jan 8;11(1):e0146100. doi: 10.1371/journal.pone.0146100. eCollection 2016.

6.

Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.

Tebbe A, Klammer M, Sighart S, Schaab C, Daub H.

Rapid Commun Mass Spectrom. 2015 May 15;29(9):795-801. doi: 10.1002/rcm.7160.

PMID:
26377007
7.

Comparative proteome analysis across non-small cell lung cancer cell lines.

Grundner-Culemann K, Dybowski JN, Klammer M, Tebbe A, Schaab C, Daub H.

J Proteomics. 2016 Jan 1;130:1-10. doi: 10.1016/j.jprot.2015.09.003. Epub 2015 Sep 8.

PMID:
26361996
8.

Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces.

Langer A, Schräml M, Strasser R, Daub H, Myers T, Heindl D, Rant U.

Sci Rep. 2015 Jul 15;5:12066. doi: 10.1038/srep12066.

9.

Quantitative proteomics of kinase inhibitor targets and mechanisms.

Daub H.

ACS Chem Biol. 2015 Jan 16;10(1):201-12. doi: 10.1021/cb5008794. Epub 2014 Dec 17. Review.

PMID:
25474541
10.

Phosphoregulation of the human SMN complex.

Husedzinovic A, Oppermann F, Draeger-Meurer S, Chari A, Fischer U, Daub H, Gruss OJ.

Eur J Cell Biol. 2014 Mar;93(3):106-17. doi: 10.1016/j.ejcb.2014.01.006. Epub 2014 Feb 11.

PMID:
24602413
11.

Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib.

Schaab C, Oppermann FS, Klammer M, Pfeifer H, Tebbe A, Oellerich T, Krauter J, Levis M, Perl AE, Daub H, Steffen B, Godl K, Serve H.

Leukemia. 2014 Mar;28(3):716-9. doi: 10.1038/leu.2013.347. Epub 2013 Nov 19. No abstract available.

12.

Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer.

Oppermann FS, Klammer M, Bobe C, Cox J, Schaab C, Tebbe A, Daub H.

J Proteome Res. 2013 Sep 6;12(9):4089-100. doi: 10.1021/pr400417g. Epub 2013 Aug 16.

PMID:
23898821
13.

Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling.

Mäusbacher N, Schreiber TB, Machatti M, Schaab C, Daub H.

Proteomics. 2012 Dec;12(23-24):3485-98. doi: 10.1002/pmic.201200172. Epub 2012 Nov 22.

PMID:
23090842
14.

DNA damage response: multilevel proteomics gains momentum.

Daub H.

Mol Cell. 2012 Apr 27;46(2):113-4. doi: 10.1016/j.molcel.2012.04.011.

15.

Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.

Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H.

J Proteome Res. 2012 Apr 6;11(4):2397-408. doi: 10.1021/pr201134p. Epub 2012 Mar 14.

PMID:
22369663
16.

Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation.

Soroka J, Wandinger SK, Mäusbacher N, Schreiber T, Richter K, Daub H, Buchner J.

Mol Cell. 2012 Feb 24;45(4):517-28. doi: 10.1016/j.molcel.2011.12.031.

17.

Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets.

Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV, Daub H.

Mol Cell Proteomics. 2012 Apr;11(4):O111.012351. doi: 10.1074/mcp.O111.012351. Epub 2011 Dec 22.

18.

Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.

Weber C, Schreiber TB, Daub H.

J Proteomics. 2012 Feb 2;75(4):1343-56. doi: 10.1016/j.jprot.2011.11.004. Epub 2011 Nov 15.

PMID:
22115753
19.

Proteomics analysis of cellular imatinib targets and their candidate downstream effectors.

Breitkopf SB, Oppermann FS, Keri G, Grammel M, Daub H.

J Proteome Res. 2010 Nov 5;9(11):6033-43. doi: 10.1021/pr1008527. Epub 2010 Oct 19.

PMID:
20866107
20.

Glycoprotein capture and quantitative phosphoproteomics indicate coordinated regulation of cell migration upon lysophosphatidic acid stimulation.

Mäusbacher N, Schreiber TB, Daub H.

Mol Cell Proteomics. 2010 Nov;9(11):2337-53. doi: 10.1074/mcp.M110.000737. Epub 2010 Jul 16.

21.

Kinase inhibitors: narrowing down the real targets.

Daub H.

Nat Chem Biol. 2010 Apr;6(4):249-50. doi: 10.1038/nchembio.336. No abstract available.

PMID:
20300093
22.

Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response.

Sharma K, Kumar C, Kéri G, Breitkopf SB, Oppermann FS, Daub H.

J Proteome Res. 2010 May 7;9(5):2539-49. doi: 10.1021/pr901192p.

PMID:
20222745
23.

Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression.

Dulla K, Daub H, Hornberger R, Nigg EA, Körner R.

Mol Cell Proteomics. 2010 Jun;9(6):1167-81. doi: 10.1074/mcp.M900335-MCP200. Epub 2010 Jan 23.

24.

An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling.

Schreiber TB, Mäusbacher N, Kéri G, Cox J, Daub H.

Mol Cell Proteomics. 2010 Jun;9(6):1047-62. doi: 10.1074/mcp.M900486-MCP200. Epub 2010 Jan 12.

25.

Proteomics strategy for quantitative protein interaction profiling in cell extracts.

Sharma K, Weber C, Bairlein M, Greff Z, Kéri G, Cox J, Olsen JV, Daub H.

Nat Methods. 2009 Oct;6(10):741-4. doi: 10.1038/nmeth.1373. Epub 2009 Sep 13.

PMID:
19749761
26.

Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics.

Pan C, Olsen JV, Daub H, Mann M.

Mol Cell Proteomics. 2009 Dec;8(12):2796-808. doi: 10.1074/mcp.M900285-MCP200. Epub 2009 Aug 3.

27.

Quantitative phosphokinome analysis of the Met pathway activated by the invasin internalin B from Listeria monocytogenes.

Reinl T, Nimtz M, Hundertmark C, Johl T, Kéri G, Wehland J, Daub H, Jänsch L.

Mol Cell Proteomics. 2009 Dec;8(12):2778-95. doi: 10.1074/mcp.M800521-MCP200. Epub 2009 Jul 29.

28.

Large-scale proteomics analysis of the human kinome.

Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Kéri G, Mann M, Daub H.

Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.

29.

Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.

Schreiber TB, Mäusbacher N, Breitkopf SB, Grundner-Culemann K, Daub H.

Proteomics. 2008 Nov;8(21):4416-32. doi: 10.1002/pmic.200800132. Review.

PMID:
18837465
30.

Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.

Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R, Greff Z, Kéri G, Stemmann O, Mann M.

Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.

31.

Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics.

Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H.

Mol Cell Proteomics. 2008 Sep;7(9):1763-77. doi: 10.1074/mcp.M800196-MCP200. Epub 2008 May 31.

32.

AXL is a potential target for therapeutic intervention in breast cancer progression.

Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L, Szabadkai I, Daub H, Kéri G, Ullrich A.

Cancer Res. 2008 Mar 15;68(6):1905-15. doi: 10.1158/0008-5472.CAN-07-2661.

33.

Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry.

Wissing J, Jänsch L, Nimtz M, Dieterich G, Hornberger R, Kéri G, Wehland J, Daub H.

Mol Cell Proteomics. 2007 Mar;6(3):537-47. Epub 2006 Dec 27.

34.

Characterisation of kinase-selective inhibitors by chemical proteomics.

Daub H.

Biochim Biophys Acta. 2005 Dec 30;1754(1-2):183-90. Epub 2005 Sep 12. Review.

PMID:
16198161
35.

Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling.

Godl K, Gruss OJ, Eickhoff J, Wissing J, Blencke S, Weber M, Degen H, Brehmer D, Orfi L, Horváth Z, Kéri G, Müller S, Cotten M, Ullrich A, Daub H.

Cancer Res. 2005 Aug 1;65(15):6919-26.

36.

Host cell targets in HCV therapy: novel strategy or proven practice?

Klebl BM, Kurtenbach A, Salassidis K, Daub H, Herget T.

Antivir Chem Chemother. 2005;16(2):69-90. Review.

PMID:
15889531
37.

Cellular targets of gefitinib.

Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, Müller S, Klebl B, Cotten M, Kéri G, Wissing J, Daub H.

Cancer Res. 2005 Jan 15;65(2):379-82.

38.

Strategies to overcome resistance to targeted protein kinase inhibitors.

Daub H, Specht K, Ullrich A.

Nat Rev Drug Discov. 2004 Dec;3(12):1001-10. Review.

PMID:
15573099
39.

Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors.

Wissing J, Godl K, Brehmer D, Blencke S, Weber M, Habenberger P, Stein-Gerlach M, Missio A, Cotten M, Müller S, Daub H.

Mol Cell Proteomics. 2004 Dec;3(12):1181-93. Epub 2004 Oct 8.

40.

Evaluation of kinase inhibitor selectivity by chemical proteomics.

Daub H, Godl K, Brehmer D, Klebl B, Müller G.

Assay Drug Dev Technol. 2004 Apr;2(2):215-24. Review.

PMID:
15165517
41.

Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors.

Blencke S, Zech B, Engkvist O, Greff Z, Orfi L, Horváth Z, Kéri G, Ullrich A, Daub H.

Chem Biol. 2004 May;11(5):691-701.

42.

Proteome-wide identification of cellular targets affected by bisindolylmaleimide-type protein kinase C inhibitors.

Brehmer D, Godl K, Zech B, Wissing J, Daub H.

Mol Cell Proteomics. 2004 May;3(5):490-500. Epub 2004 Feb 9.

43.

Proteomic analysis of kinase inhibitor selectivity and function.

Godl K, Daub H.

Cell Cycle. 2004 Apr;3(4):393-5. Epub 2004 Apr 1.

PMID:
14752275
44.

An efficient proteomics method to identify the cellular targets of protein kinase inhibitors.

Godl K, Wissing J, Kurtenbach A, Habenberger P, Blencke S, Gutbrod H, Salassidis K, Stein-Gerlach M, Missio A, Cotten M, Daub H.

Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15434-9. Epub 2003 Dec 10.

45.

Exploiting features of adenovirus replication to support mammalian kinase production.

Cotten M, Stegmueller K, Eickhoff J, Hanke M, Herzberger K, Herget T, Choidas A, Daub H, Godl K.

Nucleic Acids Res. 2003 Nov 1;31(21):e128.

46.

Identification and characterization of amphiphysin II as a novel cellular interaction partner of the hepatitis C virus NS5A protein.

Zech B, Kurtenbach A, Krieger N, Strand D, Blencke S, Morbitzer M, Salassidis K, Cotten M, Wissing J, Obert S, Bartenschlager R, Herget T, Daub H.

J Gen Virol. 2003 Mar;84(Pt 3):555-60.

PMID:
12604805
47.
48.

Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein.

Daub H, Blencke S, Habenberger P, Kurtenbach A, Dennenmoser J, Wissing J, Ullrich A, Cotten M.

J Virol. 2002 Aug;76(16):8124-37.

49.

Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16.

Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A.

J Biol Chem. 2001 Jan 19;276(3):1677-80. Epub 2000 Oct 31.

50.

EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF.

Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A.

Nature. 1999 Dec 23-30;402(6764):884-8.

PMID:
10622253

Supplemental Content

Support Center