Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

Mycobacterium tuberculosis Rv2700 Contributes to Cell Envelope Integrity and Virulence.

Ballister ER, Samanovic MI, Darwin KH.

J Bacteriol. 2019 Jul 8. pii: JB.00228-19. doi: 10.1128/JB.00228-19. [Epub ahead of print]

PMID:
31285241
2.

Characterization of Guided Entry of Tail-Anchored Proteins 3 Homologues in Mycobacterium tuberculosis.

Hu K, Jordan AT, Zhang S, Dhabaria A, Kovach A, Rangel MV, Ueberheide B, Li H, Darwin KH.

J Bacteriol. 2019 Jun 21;201(14). pii: e00159-19. doi: 10.1128/JB.00159-19. Print 2019 Jul 15.

PMID:
31036728
3.

The Mycobacterium tuberculosis Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway.

Becker SH, Jastrab JB, Dhabaria A, Chaton CT, Rush JS, Korotkov KV, Ueberheide B, Darwin KH.

Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3202-3210. doi: 10.1073/pnas.1819468116. Epub 2019 Feb 5.

PMID:
30723150
4.

Cytokinin Signaling in Mycobacterium tuberculosis.

Samanovic MI, Hsu HC, Jones MB, Jones V, McNeil MR, Becker SH, Jordan AT, Strnad M, Xu C, Jackson M, Li H, Darwin KH.

MBio. 2018 Jun 19;9(3). pii: e00989-18. doi: 10.1128/mBio.00989-18.

5.

Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis.

Hu K, Jastrab JB, Zhang S, Kovach A, Zhao G, Darwin KH, Li H.

J Biol Chem. 2018 Mar 30;293(13):4713-4723. doi: 10.1074/jbc.RA117.001471. Epub 2018 Feb 5.

6.

Mycobacterium tuberculosis proteasomal ATPase Mpa has a β-grasp domain that hinders docking with the proteasome core protease.

Wu Y, Hu K, Li D, Bai L, Yang S, Jastrab JB, Xiao S, Hu Y, Zhang S, Darwin KH, Wang T, Li H.

Mol Microbiol. 2017 Jul;105(2):227-241. doi: 10.1111/mmi.13695. Epub 2017 May 3.

7.

Mycobacterium tuberculosis Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates.

Zhang S, Burns-Huang KE, Janssen GV, Li H, Ovaa H, Hedstrom L, Darwin KH.

MBio. 2017 Feb 21;8(1). pii: e00122-17. doi: 10.1128/mBio.00122-17.

8.

Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2).

Bai L, Jastrab JB, Isasa M, Hu K, Yu H, Gygi SP, Darwin KH, Li H.

J Bacteriol. 2017 Apr 11;199(9). pii: e00846-16. doi: 10.1128/JB.00846-16. Print 2017 May 1.

9.

Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E (pafE) Mutant.

Jastrab JB, Samanovic MI, Copin R, Shopsin B, Darwin KH.

J Bacteriol. 2017 Mar 14;199(7). pii: e00850-16. doi: 10.1128/JB.00850-16. Print 2017 Apr 1.

10.

Bacterial Proteasomes: Mechanistic and Functional Insights.

Becker SH, Darwin KH.

Microbiol Mol Biol Rev. 2016 Dec 14;81(1). pii: e00036-16. Print 2017 Mar. Review.

11.

Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

Bai L, Hu K, Wang T, Jastrab JB, Darwin KH, Li H.

Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E1983-92. doi: 10.1073/pnas.1512094113. Epub 2016 Mar 21. Erratum in: Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2469.

12.

Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer.

Nowicka U, Hoffman M, Randles L, Shi X, Khavrutskii L, Stefanisko K, Tarasova NI, Darwin KH, Walters KJ.

Proteins. 2016 Feb;84(2):193-200. doi: 10.1002/prot.24970. Epub 2015 Dec 29.

13.

Radical Sabbaticals.

Clevers H, Firestein S, Ringrose L, Bernards R, Darwin KH, Vance RE.

Cell. 2015 Nov 5;163(4):788-9. doi: 10.1016/j.cell.2015.10.058. No abstract available.

14.

Game of 'Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis.

Samanovic MI, Darwin KH.

Trends Microbiol. 2016 Jan;24(1):26-34. doi: 10.1016/j.tim.2015.10.001. Epub 2015 Oct 29. Review.

15.

Bacterial Proteasomes.

Jastrab JB, Darwin KH.

Annu Rev Microbiol. 2015;69:109-27. doi: 10.1146/annurev-micro-091014-104201. Review.

16.

The Pup-Proteasome System of Mycobacteria.

Bode NJ, Darwin KH.

Microbiol Spectr. 2014 Oct;2(5). doi: 10.1128/microbiolspec.MGM2-0008-2013. Review.

17.

Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?

Darwin KH.

J Biol Chem. 2015 Jul 31;290(31):18962-6. doi: 10.1074/jbc.R115.640193. Epub 2015 Jun 8. Review.

18.

Cytokinins beyond plants: synthesis by Mycobacterium tuberculosis.

Samanovic MI, Darwin KH.

Microb Cell. 2015 May 4;2(5):168-170. doi: 10.15698/mic2015.05.203.

19.

An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis.

Jastrab JB, Wang T, Murphy JP, Bai L, Hu K, Merkx R, Huang J, Chatterjee C, Ovaa H, Gygi SP, Li H, Darwin KH.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1763-72. doi: 10.1073/pnas.1423319112. Epub 2015 Mar 23.

20.

Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide.

Samanovic MI, Tu S, Novák O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH.

Mol Cell. 2015 Mar 19;57(6):984-994. doi: 10.1016/j.molcel.2015.01.024. Epub 2015 Feb 26.

21.

Copper homeostasis in Mycobacterium tuberculosis.

Shi X, Darwin KH.

Metallomics. 2015 Jun;7(6):929-34. doi: 10.1039/c4mt00305e. Review.

22.

The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence.

Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI.

MBio. 2014 Feb 18;5(1). pii: e00876-13. doi: 10.1128/mBio.00876-13.

23.

The pup-proteasome system of Mycobacterium tuberculosis.

Samanovic MI, Li H, Darwin KH.

Subcell Biochem. 2013;66:267-95. doi: 10.1007/978-94-007-5940-4_10. Review.

24.

Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase.

Burns KE, McAllister FE, Schwerdtfeger C, Mintseris J, Cerda-Maira F, Noens EE, Wilmanns M, Hubbard SR, Melandri F, Ovaa H, Gygi SP, Darwin KH.

J Biol Chem. 2012 Oct 26;287(44):37522-9. doi: 10.1074/jbc.M112.384784. Epub 2012 Aug 31.

25.

Synthesis and evaluation of a selective fluorogenic Pup derived assay reagent for Dop, a potential drug target in Mycobacterium tuberculosis.

Merkx R, Burns KE, Slobbe P, El Oualid F, El Atmioui D, Darwin KH, Ovaa H.

Chembiochem. 2012 Sep 24;13(14):2056-60. doi: 10.1002/cbic.201200460. Epub 2012 Aug 24.

26.

Pupylation: proteasomal targeting by a protein modifier in bacteria.

Burns KE, Darwin KH.

Methods Mol Biol. 2012;832:151-60. doi: 10.1007/978-1-61779-474-2_10.

27.

Copper in microbial pathogenesis: meddling with the metal.

Samanovic MI, Ding C, Thiele DJ, Darwin KH.

Cell Host Microbe. 2012 Feb 16;11(2):106-15. doi: 10.1016/j.chom.2012.01.009. Review.

28.

Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli.

Cerda-Maira FA, McAllister F, Bode NJ, Burns KE, Gygi SP, Darwin KH.

EMBO Rep. 2011 Jul 8;12(8):863-70. doi: 10.1038/embor.2011.109.

29.

Pupylation : A Signal for Proteasomal Degradation in Mycobacterium tuberculosis.

Burns KE, Darwin KH.

Subcell Biochem. 2010;54:149-57. doi: 10.1007/978-1-4419-6676-6_12.

30.

A novel copper-responsive regulon in Mycobacterium tuberculosis.

Festa RA, Jones MB, Butler-Wu S, Sinsimer D, Gerads R, Bishai WR, Peterson SN, Darwin KH.

Mol Microbiol. 2011 Jan;79(1):133-48. doi: 10.1111/j.1365-2958.2010.07431.x. Epub 2010 Oct 29.

31.

Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation.

Wang T, Darwin KH, Li H.

Nat Struct Mol Biol. 2010 Nov;17(11):1352-7. doi: 10.1038/nsmb.1918. Epub 2010 Oct 17.

32.

"Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates.

Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH.

Mol Cell. 2010 Sep 10;39(5):821-7. doi: 10.1016/j.molcel.2010.07.019. Epub 2010 Aug 12.

33.

Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis.

Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH.

Mol Microbiol. 2010 Sep;77(5):1123-35. doi: 10.1111/j.1365-2958.2010.07276.x.

34.

SAMPyling proteins in archaea.

Darwin KH, Hofmann K.

Trends Biochem Sci. 2010 Jun;35(6):348-51. doi: 10.1016/j.tibs.2010.03.003. Epub 2010 May 23. Review.

35.

Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates.

Burns KE, Pearce MJ, Darwin KH.

J Bacteriol. 2010 Jun;192(11):2933-5. doi: 10.1128/JB.01639-09. Epub 2010 Mar 16.

36.

Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation.

Burns KE, Darwin KH.

Cell Microbiol. 2010 Apr 1;12(4):424-31. doi: 10.1111/j.1462-5822.2010.01447.x. Epub 2010 Jan 26. Review.

37.

Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected] .

Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, Darwin KH.

PLoS One. 2010 Jan 6;5(1):e8589. doi: 10.1371/journal.pone.0008589. Erratum in: PLoS One. 2010;5(7) doi: 10.1371/annotation/bf95b2c0-4085-417b-a2b2-7a85ffe77a9e.

38.

Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa.

Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH, Li H.

Structure. 2009 Oct 14;17(10):1377-85. doi: 10.1016/j.str.2009.08.010.

39.

The Mycobacterium tuberculosis proteasome: more than just a barrel-shaped protease.

Cerda-Maira F, Darwin KH.

Microbes Infect. 2009 Dec;11(14-15):1150-5. doi: 10.1016/j.micinf.2009.08.003. Epub 2009 Aug 9. Review.

40.

Prokaryotic ubiquitin-like protein pup is intrinsically disordered.

Chen X, Solomon WC, Kang Y, Cerda-Maira F, Darwin KH, Walters KJ.

J Mol Biol. 2009 Sep 11;392(1):208-17. doi: 10.1016/j.jmb.2009.07.018. Epub 2009 Jul 14.

41.

Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis.

Darwin KH.

Nat Rev Microbiol. 2009 Jul;7(7):485-91. doi: 10.1038/nrmicro2148. Epub 2009 Jun 1. Review.

42.

Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis.

Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH.

Science. 2008 Nov 14;322(5904):1104-7. doi: 10.1126/science.1163885. Epub 2008 Oct 2.

43.

Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis.

Festa RA, Pearce MJ, Darwin KH.

J Bacteriol. 2007 Apr;189(8):3044-50. Epub 2007 Feb 2.

44.

Identification of substrates of the Mycobacterium tuberculosis proteasome.

Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH.

EMBO J. 2006 Nov 15;25(22):5423-32. Epub 2006 Nov 2.

45.

Self-compartmentalized bacterial proteases and pathogenesis.

Butler SM, Festa RA, Pearce MJ, Darwin KH.

Mol Microbiol. 2006 May;60(3):553-62. Review.

46.
47.

A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP.

Hisert KB, MacCoss M, Shiloh MU, Darwin KH, Singh S, Jones RA, Ehrt S, Zhang Z, Gaffney BL, Gandotra S, Holden DW, Murray D, Nathan C.

Mol Microbiol. 2005 Jun;56(5):1234-45.

48.

Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue.

Darwin KH, Lin G, Chen Z, Li H, Nathan CF.

Mol Microbiol. 2005 Jan;55(2):561-71.

49.

The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.

Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF.

Science. 2003 Dec 12;302(5652):1963-6.

Supplemental Content

Loading ...
Support Center