Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract.

Rennie MY, Stovall S, Carson JP, Danilchik M, Thornburg KL, Rugonyi S.

J Cardiovasc Dev Dis. 2017 Dec 20;4(4). pii: E24. doi: 10.3390/jcdd4040024.

2.

Erratum.

Pelegri F, Danilchik M, Sutherland A.

Adv Exp Med Biol. 2017;953:E1. doi: 10.1007/978-3-319-46095-6_11. No abstract available.

PMID:
28299712
3.

A chicken embryo cardiac outflow tract atlas for registering changes due to abnormal blood flow.

Carson JP, Rennie MY, Danilchik M, Thornburg K, Rugonyi S.

Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1236-1239. doi: 10.1109/EMBC.2016.7590929.

4.

Exosomal trafficking in Xenopus development.

Danilchik M, Tumarkin T.

Genesis. 2017 Jan;55(1-2). doi: 10.1002/dvg.23011. Review.

PMID:
28095652
5.

Vertebrate Embryonic Cleavage Pattern Determination.

Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F.

Adv Exp Med Biol. 2017;953:117-171. Review.

PMID:
27975272
6.

RHEB1 expression in embryonic and postnatal mouse.

Tian Q, Smart JL, Clement JH, Wang Y, Derkatch A, Schubert H, Danilchik MV, Marks DL, Fedorov LM.

Histochem Cell Biol. 2016 May;145(5):561-72. doi: 10.1007/s00418-015-1394-3. Epub 2015 Dec 26.

PMID:
26708151
7.

Symmetry breakage in the vertebrate embryo: when does it happen and how does it work?

Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV.

Dev Biol. 2014 Sep 1;393(1):109-23. doi: 10.1016/j.ydbio.2014.06.014. Epub 2014 Jun 24. Review.

8.

Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: Potential roles in morphogen distribution and detection.

Danilchik M, Williams M, Brown E.

Dev Biol. 2013 Oct 1;382(1):70-81. doi: 10.1016/j.ydbio.2013.07.024. Epub 2013 Aug 2.

9.

Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus.

Beyer T, Danilchik M, Thumberger T, Vick P, Tisler M, Schneider I, Bogusch S, Andre P, Ulmer B, Walentek P, Niesler B, Blum M, Schweickert A.

Curr Biol. 2012 Jan 10;22(1):33-9. doi: 10.1016/j.cub.2011.11.027. Epub 2011 Dec 15.

10.

Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach.

Schweickert A, Walentek P, Thumberger T, Danilchik M.

Differentiation. 2012 Feb;83(2):S67-77. doi: 10.1016/j.diff.2011.11.005. Epub 2011 Dec 1. Review.

PMID:
22136958
11.

Manipulating and imaging the early Xenopus laevis embryo.

Danilchik MV.

Methods Mol Biol. 2011;770:21-54. doi: 10.1007/978-1-61779-210-6_2.

PMID:
21805260
12.

Membrane dynamics of cleavage furrow closure in Xenopus laevis.

Danilchik MV, Brown EE.

Dev Dyn. 2008 Mar;237(3):565-79. doi: 10.1002/dvdy.21442.

13.

Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?

Danilchik MV, Brown EE, Riegert K.

Development. 2006 Nov;133(22):4517-26. Epub 2006 Oct 18.

15.

Furrow microtubules and localized exocytosis in cleaving Xenopus laevis embryos.

Danilchik MV, Bedrick SD, Brown EE, Ray K.

J Cell Sci. 2003 Jan 15;116(Pt 2):273-83.

16.

Applications of confocal microscopy to study the roles of the cytoskeleton during early embryogenesis in amphibians.

Danilchik MV, Brown EE, Larkin K, Ray K.

Microsc Microanal. 1999;5 Suppl 2:1076-7. No abstract available.

PMID:
12143892
18.

Microtubules are required for completion of cytokinesis in sea urchin eggs.

Larkin K, Danilchik MV.

Dev Biol. 1999 Oct 1;214(1):215-26.

19.

Oocytes are a source of catecholamines in the primate ovary: evidence for a cell-cell regulatory loop.

Mayerhofer A, Smith GD, Danilchik M, Levine JE, Wolf DP, Dissen GA, Ojeda SR.

Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10990-5.

20.

Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos.

Danilchik MV, Funk WC, Brown EE, Larkin K.

Dev Biol. 1998 Feb 1;194(1):47-60.

21.
22.

Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos.

Fredieu JR, Cui Y, Maier D, Danilchik MV, Christian JL.

Dev Biol. 1997 Jun 1;186(1):100-14.

23.

Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines.

Mayerhofer A, Danilchik M, Pau KY, Lara HE, Russell LD, Ojeda SR.

Biol Reprod. 1996 Sep;55(3):509-18. Erratum in: Biol Reprod 1998 May;58(5):1330.

PMID:
8862766
24.

Gravitational effects on the rearrangement of cytoplasmic components during axial formation in amphibian development.

Phillips CR, Whalon B, Moore J, Danilchik M.

Adv Space Res. 1996;17(6-7):225-35.

PMID:
11538621
25.

The primate ovary contains a population of catecholaminergic neuron-like cells expressing nerve growth factor receptors.

Dees WL, Hiney JK, Schultea TD, Mayerhofer A, Danilchik M, Dissen GA, Ojeda SR.

Endocrinology. 1995 Dec;136(12):5760-8.

PMID:
7588334
26.

Relocation of mitochondria to the prospective dorsal marginal zone during Xenopus embryogenesis.

Yost HJ, Phillips CR, Boore JL, Bertman J, Whalon B, Danilchik MV.

Dev Biol. 1995 Jul;170(1):83-90.

27.

Provisional bilateral symmetry in Xenopus eggs is established during maturation.

Brown EE, Margelot KM, Danilchik MV.

Zygote. 1994 Aug;2(3):213-20.

PMID:
8785679
28.

Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.

Denegre JM, Danilchik MV.

Dev Biol. 1993 Nov;160(1):157-64.

PMID:
8224533
29.

Deep cytoplasmic rearrangements in ventralized Xenopus embryos.

Brown EE, Denegre JM, Danilchik MV.

Dev Biol. 1993 Nov;160(1):148-56.

PMID:
8224531
30.
31.

Deep cytoplasmic rearrangements during early development in Xenopus laevis.

Danilchik MV, Denegre JM.

Development. 1991 Apr;111(4):845-56.

32.

Generation of body plan phenotypes in early embryogenesis.

Kao K, Danilchik M.

Methods Cell Biol. 1991;36:271-84.

PMID:
1811138
33.

Cell intercalation during notochord development in Xenopus laevis.

Keller R, Cooper MS, Danilchik M, Tibbetts P, Wilson PA.

J Exp Zool. 1989 Aug;251(2):134-54.

PMID:
2769201
34.

Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development.

Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R.

Development. 1989;107 Suppl:37-51. Review.

PMID:
2699856
36.
38.

Separate ribosomal pools in sea urchin embryos: ammonia activates a movement between pools.

Danilchik MV, Yablonka-Reuveni Z, Moon RT, Reed SK, Hille MB.

Biochemistry. 1986 Jun 17;25(12):3696-702.

PMID:
3718954
39.

The protein synthetic machinery: ribosomes and cell-free systems.

Hille MB, Danilchik MV.

Methods Cell Biol. 1986;27:175-88. Review. No abstract available.

PMID:
3517581
40.

The function and mechanism of convergent extension during gastrulation of Xenopus laevis.

Keller RE, Danilchik M, Gimlich R, Shih J.

J Embryol Exp Morphol. 1985 Nov;89 Suppl:185-209.

41.

Localization and induction in early development of Xenopus.

Gerhart JC, Vincent JP, Scharf SR, Black SD, Gimlich RL, Danilchik M.

Philos Trans R Soc Lond B Biol Sci. 1984 Dec 4;307(1132):319-30.

PMID:
6151704
42.
43.

Translational control in sea urchin eggs and embryos: initiation is rate limiting in blastula stage embryos.

Hille MB, Hall DC, Yablonka-Reuveni Z, Danilchik MV, Moon RT.

Dev Biol. 1981 Aug;86(1):241-9. No abstract available.

44.
45.

Sperm antibodies after vasectomy with fulguration.

Alexander NJ, Schmidt SS, Free MJ, Danilchik MV, Hill WT.

J Urol. 1976 Jan;115(1):77-8.

PMID:
1246118

Supplemental Content

Loading ...
Support Center