Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Determining mechanical features of modulated epithelial monolayers using subnuclear particle tracking.

Armiger TJ, Lampi MC, Reinhart-King CA, Dahl KN.

J Cell Sci. 2018 Jun 21;131(12). pii: jcs216010. doi: 10.1242/jcs.216010.

PMID:
29748381
2.

SIRT6 facilitates directional telomere movement upon oxidative damage.

Gao Y, Tan J, Jin J, Ma H, Chen X, Leger B, Xu J, Spagnol ST, Dahl KN, Levine AS, Liu Y, Lan L.

Sci Rep. 2018 Mar 29;8(1):5407. doi: 10.1038/s41598-018-23602-0.

3.

SSRP1 Cooperates with PARP and XRCC1 to Facilitate Single-Strand DNA Break Repair by Chromatin Priming.

Gao Y, Li C, Wei L, Teng Y, Nakajima S, Chen X, Xu J, Leger B, Ma H, Spagnol ST, Wan Y, Dahl KN, Liu Y, Levine AS, Lan L.

Cancer Res. 2017 May 15;77(10):2674-2685. doi: 10.1158/0008-5472.CAN-16-3128. Epub 2017 Apr 17. Erratum in: Cancer Res. 2017 Nov 1;77(21):6047.

4.

Mechanobiology of Chromatin and the Nuclear Interior.

Spagnol ST, Armiger TJ, Dahl KN.

Cell Mol Bioeng. 2016 Jun;9(2):268-276. doi: 10.1007/s12195-016-0444-9. Epub 2016 May 11.

5.

Nuclear mechanical resilience but not stiffness is modulated by αII-spectrin.

Armiger TJ, Spagnol ST, Dahl KN.

J Biomech. 2016 Dec 8;49(16):3983-3989. doi: 10.1016/j.jbiomech.2016.10.034. Epub 2016 Oct 27.

6.

Correction: Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.

Spagnol ST, Dahl KN.

PLoS One. 2016 Apr 25;11(4):e0154639. doi: 10.1371/journal.pone.0154639. eCollection 2016.

7.

Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

Boyer PD, Ganesh S, Qin Z, Holt BD, Buehler MJ, Islam MF, Dahl KN.

ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3524-34. doi: 10.1021/acsami.5b12602. Epub 2016 Feb 1.

PMID:
26783632
8.

Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.

Spagnol ST, Dahl KN.

PLoS One. 2016 Jan 14;11(1):e0146244. doi: 10.1371/journal.pone.0146244. eCollection 2016. Erratum in: PLoS One. 2016;11(4):e0154639.

9.

Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration.

Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN.

Ann Biomed Eng. 2016 Jul;44(7):2123-31. doi: 10.1007/s10439-015-1508-z. Epub 2015 Nov 18.

PMID:
26581348
10.

Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection.

Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF.

J Appl Toxicol. 2016 Apr;36(4):568-78. doi: 10.1002/jat.3255. Epub 2015 Oct 28.

11.

Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force.

Booth EA, Spagnol ST, Alcoser TA, Dahl KN.

Soft Matter. 2015 Aug 28;11(32):6412-8. doi: 10.1039/c5sm00521c. Epub 2015 Jul 14.

PMID:
26171741
12.

Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF.

J Appl Toxicol. 2016 Apr;36(4):579-85. doi: 10.1002/jat.3203. Epub 2015 Jul 7.

13.

Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes.

Holt BD, Law JJ, Boyer PD, Wilson LJ, Dahl KN, Islam MF.

ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14593-602. doi: 10.1021/acsami.5b04851. Epub 2015 Jul 2.

PMID:
26098461
14.

The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A.

Ganesh S, Qin Z, Spagnol ST, Biegler MT, Coffey KA, Kalinowski A, Buehler MJ, Dahl KN.

Nucleus. 2015;6(3):203-11. doi: 10.1080/19491034.2015.1031436. Epub 2015 Mar 25.

15.

Nuclear stiffening inhibits migration of invasive melanoma cells.

Ribeiro AJ, Khanna P, Sukumar A, Dong C, Dahl KN.

Cell Mol Bioeng. 2014 Dec 1;7(4):544-551.

16.

Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome.

Kalinowski A, Yaron PN, Qin Z, Shenoy S, Buehler MJ, Lösche M, Dahl KN.

Biophys Chem. 2014 Dec;195:43-8. doi: 10.1016/j.bpc.2014.08.005. Epub 2014 Aug 23.

17.

Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations.

Spagnol ST, Dahl KN.

Integr Biol (Camb). 2014 May;6(5):523-31. doi: 10.1039/c3ib40226f.

PMID:
24619297
18.

Actin reorganization through dynamic interactions with single-wall carbon nanotubes.

Shams H, Holt BD, Mahboobi SH, Jahed Z, Islam MF, Dahl KN, Mofrad MR.

ACS Nano. 2014 Jan 28;8(1):188-97. doi: 10.1021/nn402865e. Epub 2013 Dec 24.

PMID:
24351114
19.

Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association.

Kalinowski A, Qin Z, Coffey K, Kodali R, Buehler MJ, Lösche M, Dahl KN.

Biophys J. 2013 May 21;104(10):2246-53. doi: 10.1016/j.bpj.2013.04.016.

20.

Localizing and extracting filament distributions from microscopy images.

Basu S, Dahl KN, Rohde GK.

J Microsc. 2013 Apr;250(1):57-67. doi: 10.1111/jmi.12018. Retraction in: J Microsc. 2014 Jun;254(3):166.

21.

Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.

Booth-Gauthier EA, Du V, Ghibaudo M, Rape AD, Dahl KN, Ladoux B.

Integr Biol (Camb). 2013 Mar;5(3):569-77. doi: 10.1039/c3ib20231c.

PMID:
23370891
22.

Force-induced changes in subnuclear movement and rheology.

Booth-Gauthier EA, Alcoser TA, Yang G, Dahl KN.

Biophys J. 2012 Dec 19;103(12):2423-31. doi: 10.1016/j.bpj.2012.10.039. Epub 2012 Dec 18.

23.

Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive.

Holt BD, McCorry MC, Boyer PD, Dahl KN, Islam MF.

Nanoscale. 2012 Dec 7;4(23):7425-34. doi: 10.1039/c2nr31928d.

PMID:
23086474
24.

Modeling nuclear blebs in a nucleoskeleton of independent filament networks.

Wren NS, Zhong Z, Schwartz RS, Dahl KN.

Cell Mol Bioeng. 2012 Mar 1;5(1):73-81. Epub 2011 Aug 19.

25.

Cells take up and recover from protein-stabilized single-wall carbon nanotubes with two distinct rates.

Holt BD, Dahl KN, Islam MF.

ACS Nano. 2012 Apr 24;6(4):3481-90. doi: 10.1021/nn300504x. Epub 2012 Apr 4.

PMID:
22458848
26.

Mechanical characterization of adult stem cells from bone marrow and perivascular niches.

Ribeiro AJ, Tottey S, Taylor RW, Bise R, Kanade T, Badylak SF, Dahl KN.

J Biomech. 2012 Apr 30;45(7):1280-7. doi: 10.1016/j.jbiomech.2012.01.032. Epub 2012 Feb 18.

27.

Altered cell mechanics from the inside: dispersed single wall carbon nanotubes integrate with and restructure actin.

Holt BD, Shams H, Horst TA, Basu S, Rape AD, Wang YL, Rohde GK, Mofrad MR, Islam MF, Dahl KN.

J Funct Biomater. 2012 May 23;3(2):398-417. doi: 10.3390/jfb3020398.

28.

Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders.

Choi S, Wang W, Ribeiro AJ, Kalinowski A, Gregg SQ, Opresko PL, Niedernhofer LJ, Rohde GK, Dahl KN.

Nucleus. 2011 Nov-Dec;2(6):570-9. doi: 10.4161/nucl.2.6.17798. Epub 2011 Nov 1.

29.

Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration.

Yaron PN, Holt BD, Short PA, Lösche M, Islam MF, Dahl KN.

J Nanobiotechnology. 2011 Sep 30;9:45. doi: 10.1186/1477-3155-9-45.

30.

Structure and stability of the lamin A tail domain and HGPS mutant.

Qin Z, Kalinowski A, Dahl KN, Buehler MJ.

J Struct Biol. 2011 Sep;175(3):425-33. doi: 10.1016/j.jsb.2011.05.015. Epub 2011 May 24.

31.

Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types.

Holt BD, Dahl KN, Islam MF.

Small. 2011 Aug 22;7(16):2348-55. doi: 10.1002/smll.201100437. Epub 2011 May 31.

PMID:
21626688
32.

Nucleoskeleton mechanics at a glance.

Dahl KN, Kalinowski A.

J Cell Sci. 2011 Mar 1;124(Pt 5):675-8. doi: 10.1242/jcs.069096. No abstract available.

33.

The nucleus as a central structure in defining the mechanical properties of stem cells.

Ribeiro AS, Dahl KN.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:831-4. doi: 10.1109/IEMBS.2010.5626785.

PMID:
21096312
34.

Beyond lamins other structural components of the nucleoskeleton.

Zhong Z, Wilson KL, Dahl KN.

Methods Cell Biol. 2010;98:97-119. doi: 10.1016/S0091-679X(10)98005-9. Review.

35.

Carbon nanotubes reorganize actin structures in cells and ex vivo.

Holt BD, Short PA, Rape AD, Wang YL, Islam MF, Dahl KN.

ACS Nano. 2010 Aug 24;4(8):4872-8. doi: 10.1021/nn101151x.

PMID:
20669976
36.

Stabilization of the spectrin-like domains of nesprin-1α by the evolutionarily conserved "adaptive" domain.

Zhong Z, Chang SA, Kalinowski A, Wilson KL, Dahl KN.

Cell Mol Bioeng. 2010 Jun 1;3(2):139-150.

37.

Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics.

Dahl KN, Kalinowski A, Pekkan K.

Microcirculation. 2010 Apr;17(3):179-91. doi: 10.1111/j.1549-8719.2009.00016.x. Review.

38.

In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton.

Dahl KN, Booth-Gauthier EA, Ladoux B.

J Biomech. 2010 Jan 5;43(1):2-8. doi: 10.1016/j.jbiomech.2009.09.002. Epub 2009 Oct 4. Review.

PMID:
19804886
39.

Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging.

Philip JT, Dahl KN.

J Biomech. 2008 Nov 14;41(15):3164-70. doi: 10.1016/j.jbiomech.2008.08.024. Epub 2008 Oct 21.

PMID:
18945430
40.

Nuclear shape, mechanics, and mechanotransduction.

Dahl KN, Ribeiro AJ, Lammerding J.

Circ Res. 2008 Jun 6;102(11):1307-18. doi: 10.1161/CIRCRESAHA.108.173989. Review.

41.

Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells.

Rohde GK, Ribeiro AJ, Dahl KN, Murphy RF.

Cytometry A. 2008 Apr;73(4):341-50. doi: 10.1002/cyto.a.20506.

42.

Physical plasticity of the nucleus in stem cell differentiation.

Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE.

Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15619-24. Epub 2007 Sep 24.

43.

Nuclear mechanics and methods.

Lammerding J, Dahl KN, Discher DE, Kamm RD.

Methods Cell Biol. 2007;83:269-94.

PMID:
17613312
44.

Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome.

Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T.

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10271-10276. doi: 10.1073/pnas.0601058103. Epub 2006 Jun 26.

45.

Membrane mobility and clustering of Integrin Associated Protein (IAP, CD47)--major differences between mouse and man and implications for signaling.

Subramanian S, Tsai R, Sen S, Dahl KN, Discher DE.

Blood Cells Mol Dis. 2006 May-Jun;36(3):364-72. Epub 2006 May 11. Erratum in: Blood Cells Mol Dis. 2007 Jan-Feb;38(1):66-7.

PMID:
16697668
46.

Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures.

Dahl KN, Engler AJ, Pajerowski JD, Discher DE.

Biophys J. 2005 Oct;89(4):2855-64. Epub 2005 Jul 29.

47.

The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber.

Dahl KN, Kahn SM, Wilson KL, Discher DE.

J Cell Sci. 2004 Sep 15;117(Pt 20):4779-86. Epub 2004 Aug 25.

48.

Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells.

Dahl KN, Parthasarathy R, Westhoff CM, Layton DM, Discher DE.

Blood. 2004 Feb 1;103(3):1131-6. Epub 2003 Oct 9.

49.

Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes.

Dahl KN, Westhoff CM, Discher DE.

Blood. 2003 Feb 1;101(3):1194-9. Epub 2002 Sep 26.

Supplemental Content

Support Center