Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 264

1.

On the role of helper lipids in lipid nanoparticle formulations of siRNA.

Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR.

Nanoscale. 2019 Nov 12. doi: 10.1039/c9nr09347h. [Epub ahead of print]

PMID:
31713568
2.

Phospholipid-Free Small Unilamellar Vesicles for Drug Targeting to Cells in the Liver.

Zhang W, Böttger R, Qin Z, Kulkarni JA, Vogler J, Cullis PR, Li SD.

Small. 2019 Oct;15(43):e1901782. doi: 10.1002/smll.201901782. Epub 2019 Sep 6.

PMID:
31490617
3.

Characterization of a liposomal copper(II)-quercetin formulation suitable for parenteral use.

Chen KTJ, Anantha M, Leung AWY, Kulkarni JA, Militao GGC, Wehbe M, Sutherland B, Cullis PR, Bally MB.

Drug Deliv Transl Res. 2019 Sep 3. doi: 10.1007/s13346-019-00674-7. [Epub ahead of print]

PMID:
31482519
4.

Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.

Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R.

Acc Chem Res. 2019 Sep 17;52(9):2435-2444. doi: 10.1021/acs.accounts.9b00368. Epub 2019 Aug 9.

PMID:
31397996
5.

Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin.

Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li SD.

Mol Pharm. 2019 Sep 3;16(9):3957-3967. doi: 10.1021/acs.molpharmaceut.9b00583. Epub 2019 Aug 16.

PMID:
31381352
6.

Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function.

Ramezanpour M, Schmidt ML, Bodnariuc I, Kulkarni JA, Leung SSW, Cullis PR, Thewalt JL, Tieleman DP.

Nanoscale. 2019 Aug 1;11(30):14141-14146. doi: 10.1039/c9nr02297j.

PMID:
31334542
7.

Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads.

Kulkarni JA, Witzigmann D, Leung J, van der Meel R, Zaifman J, Darjuan MM, Grisch-Chan HM, Thöny B, Tam YYC, Cullis PR.

Nanoscale. 2019 May 9;11(18):9023-9031. doi: 10.1039/c9nr02004g.

PMID:
31021343
8.

Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery.

Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D.

ACS Nano. 2019 Apr 23;13(4):3754-3782. doi: 10.1021/acsnano.8b07858. Epub 2019 Apr 2.

PMID:
30908008
9.

Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids.

Chen S, Zaifman J, Kulkarni JA, Zhigaltsev IV, Tam YK, Ciufolini MA, Tam YYC, Cullis PR.

J Control Release. 2018 Sep 28;286:46-54. doi: 10.1016/j.jconrel.2018.07.026. Epub 2018 Jul 17.

PMID:
30026080
10.

Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility.

Kulkarni JA, Cullis PR, van der Meel R.

Nucleic Acid Ther. 2018 Jun;28(3):146-157. doi: 10.1089/nat.2018.0721. Epub 2018 Apr 23. Review.

PMID:
29683383
11.

On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.

Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR.

ACS Nano. 2018 May 22;12(5):4787-4795. doi: 10.1021/acsnano.8b01516. Epub 2018 Apr 6.

PMID:
29614232
12.

CaV 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons.

Cain SM, Tyson JR, Choi HB, Ko R, Lin PJC, LeDue JM, Powell KL, Bernier LP, Rungta RL, Yang Y, Cullis PR, O'Brien TJ, MacVicar BA, Snutch TP.

Epilepsia. 2018 Apr;59(4):778-791. doi: 10.1111/epi.14018. Epub 2018 Feb 21.

13.

Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes.

Neumann UH, Ho JSS, Chen S, Tam YYC, Cullis PR, Kieffer TJ.

Mol Metab. 2017 Oct;6(10):1161-1172. doi: 10.1016/j.molmet.2017.06.012. Epub 2017 Jun 22.

14.

Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles.

Kulkarni JA, Tam YYC, Chen S, Tam YK, Zaifman J, Cullis PR, Biswas S.

Nanoscale. 2017 Sep 21;9(36):13600-13609. doi: 10.1039/c7nr03272b.

PMID:
28876010
15.

Lipid Nanoparticle Systems for Enabling Gene Therapies.

Cullis PR, Hope MJ.

Mol Ther. 2017 Jul 5;25(7):1467-1475. doi: 10.1016/j.ymthe.2017.03.013. Epub 2017 Apr 13. Review.

16.

A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo.

Lee JB, Zhang K, Tam YY, Quick J, Tam YK, Lin PJ, Chen S, Liu Y, Nair JK, Zlatev I, Rajeev KG, Manoharan M, Rennie PS, Cullis PR.

Mol Ther Nucleic Acids. 2016;5:e348. doi: 10.1038/mtna.2016.43.

17.

Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA.

Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR.

Nanomedicine. 2017 May;13(4):1377-1387. doi: 10.1016/j.nano.2016.12.014. Epub 2016 Dec 28.

PMID:
28038954
18.

The Niemann-Pick C1 Inhibitor NP3.47 Enhances Gene Silencing Potency of Lipid Nanoparticles Containing siRNA.

Wang H, Tam YY, Chen S, Zaifman J, van der Meel R, Ciufolini MA, Cullis PR.

Mol Ther. 2016 Dec;24(12):2100-2108. doi: 10.1038/mt.2016.179. Epub 2016 Sep 16.

19.

Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo.

Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H, Cullis PR.

Mol Ther Nucleic Acids. 2016 Sep 13;5(9):e363. doi: 10.1038/mtna.2016.68.

20.

Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.

Chen S, Tam YYC, Lin PJC, Sung MMH, Tam YK, Cullis PR.

J Control Release. 2016 Aug 10;235:236-244. doi: 10.1016/j.jconrel.2016.05.059. Epub 2016 May 26.

PMID:
27238441
21.

siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer.

Yamamoto Y, Lin PJ, Beraldi E, Zhang F, Kawai Y, Leong J, Katsumi H, Fazli L, Fraser R, Cullis PR, Gleave M.

Clin Cancer Res. 2015 Nov 1;21(21):4845-55. doi: 10.1158/1078-0432.CCR-15-0866. Epub 2015 Jun 23.

22.

Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.

Leung AK, Tam YY, Chen S, Hafez IM, Cullis PR.

J Phys Chem B. 2015 Jul 16;119(28):8698-706. doi: 10.1021/acs.jpcb.5b02891. Epub 2015 Jul 7.

PMID:
26087393
23.

Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles.

Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, Gozin M, Cullis PR, Dykxhoorn DM, Peer D.

ACS Nano. 2015 Jul 28;9(7):6706-16. doi: 10.1021/acsnano.5b02796. Epub 2015 Jun 10.

PMID:
26042619
24.

The cellular mechanisms of neuronal swelling underlying cytotoxic edema.

Rungta RL, Choi HB, Tyson JR, Malik A, Dissing-Olesen L, Lin PJC, Cain SM, Cullis PR, Snutch TP, MacVicar BA.

Cell. 2015 Apr 23;161(3):610-621. doi: 10.1016/j.cell.2015.03.029.

25.

Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents.

Zhigaltsev IV, Tam YK, Leung AK, Cullis PR.

J Liposome Res. 2016;26(2):96-102. doi: 10.3109/08982104.2015.1025411. Epub 2015 Apr 9.

PMID:
25856305
26.

Lipid nanoparticle delivery systems for siRNA-based therapeutics.

Wan C, Allen TM, Cullis PR.

Drug Deliv Transl Res. 2014 Feb;4(1):74-83. doi: 10.1007/s13346-013-0161-z.

PMID:
25786618
27.

Lipid nanoparticles for short interfering RNA delivery.

Leung AK, Tam YY, Cullis PR.

Adv Genet. 2014;88:71-110. doi: 10.1016/B978-0-12-800148-6.00004-3. Review.

PMID:
25409604
28.

Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration.

Chen S, Tam YY, Lin PJ, Leung AK, Tam YK, Cullis PR.

J Control Release. 2014 Dec 28;196:106-12. doi: 10.1016/j.jconrel.2014.09.025. Epub 2014 Oct 5.

PMID:
25285610
29.

Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications.

Walsh C, Ou K, Belliveau NM, Leaver TJ, Wild AW, Huft J, Lin PJ, Chen S, Leung AK, Lee JB, Hansen CL, Taylor RJ, Ramsay EC, Cullis PR.

Methods Mol Biol. 2014;1141:109-20. doi: 10.1007/978-1-4939-0363-4_6.

PMID:
24567134
30.

IGFBP2 is neither sufficient nor necessary for the physiological actions of leptin on glucose homeostasis in male ob/ob mice.

Neumann UH, Chen S, Tam YY, Baker RK, Covey SD, Cullis PR, Kieffer TJ.

Endocrinology. 2014 Mar;155(3):716-25. doi: 10.1210/en.2013-1622. Epub 2014 Jan 1.

PMID:
24424049
31.

Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain.

Rungta RL, Choi HB, Lin PJ, Ko RW, Ashby D, Nair J, Manoharan M, Cullis PR, Macvicar BA.

Mol Ther Nucleic Acids. 2013 Dec 3;2:e136. doi: 10.1038/mtna.2013.65.

32.

Advances in Lipid Nanoparticles for siRNA Delivery.

Tam YY, Chen S, Cullis PR.

Pharmaceutics. 2013 Sep 18;5(3):498-507. doi: 10.3390/pharmaceutics5030498.

33.

Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA.

Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, Wild AW, Lee JB, Taylor RJ, Tam YK, Hansen CL, Cullis PR.

Mol Ther Nucleic Acids. 2012 Aug 14;1:e37. doi: 10.1038/mtna.2012.28.

34.

Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA.

Tam YY, Chen S, Zaifman J, Tam YK, Lin PJ, Ansell S, Roberge M, Ciufolini MA, Cullis PR.

Nanomedicine. 2013 Jul;9(5):665-74. doi: 10.1016/j.nano.2012.11.006. Epub 2012 Dec 6.

PMID:
23219877
35.

Liposomal drug delivery systems: from concept to clinical applications.

Allen TM, Cullis PR.

Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1. Review.

PMID:
23036225
36.

Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core.

Leung AK, Hafez IM, Baoukina S, Belliveau NM, Zhigaltsev IV, Afshinmanesh E, Tieleman DP, Hansen CL, Hope MJ, Cullis PR.

J Phys Chem C Nanomater Interfaces. 2012 Aug 30;116(34):18440-18450. Epub 2012 Jul 18.

37.

Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo.

Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, Rajeev KG, Hafez IM, Akinc A, Maier MA, Tracy MA, Cullis PR, Madden TD, Manoharan M, Hope MJ.

Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8529-33. doi: 10.1002/anie.201203263. Epub 2012 Jul 10.

38.

Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA.

Lin PJ, Tam YY, Hafez I, Sandhu A, Chen S, Ciufolini MA, Nabi IR, Cullis PR.

Nanomedicine. 2013 Feb;9(2):233-46. doi: 10.1016/j.nano.2012.05.019. Epub 2012 Jun 12.

PMID:
22698807
39.

Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing.

Zhigaltsev IV, Belliveau N, Hafez I, Leung AK, Huft J, Hansen C, Cullis PR.

Langmuir. 2012 Feb 21;28(7):3633-40. doi: 10.1021/la204833h. Epub 2012 Feb 9.

PMID:
22268499
40.

Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo.

Lee JB, Zhang K, Tam YY, Tam YK, Belliveau NM, Sung VY, Lin PJ, LeBlanc E, Ciufolini MA, Rennie PS, Cullis PR.

Int J Cancer. 2012 Sep 1;131(5):E781-90. doi: 10.1002/ijc.27361. Epub 2012 Jan 3.

41.

Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells.

Basha G, Novobrantseva TI, Rosin N, Tam YY, Hafez IM, Wong MK, Sugo T, Ruda VM, Qin J, Klebanov B, Ciufolini M, Akinc A, Tam YK, Hope MJ, Cullis PR.

Mol Ther. 2011 Dec;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub 2011 Oct 4.

42.

Development of high-concentration lipoplexes for in vivo gene function studies in vertebrate embryos.

Geetha-Loganathan P, Nimmagadda S, Hafez I, Fu K, Cullis PR, Richman JM.

Dev Dyn. 2011 Sep;240(9):2108-19. doi: 10.1002/dvdy.22708. Epub 2011 Jul 29.

43.

Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles.

Zhigaltsev IV, Winters G, Srinivasulu M, Crawford J, Wong M, Amankwa L, Waterhouse D, Masin D, Webb M, Harasym N, Heller L, Bally MB, Ciufolini MA, Cullis PR, Maurer N.

J Control Release. 2010 Jun 15;144(3):332-40. doi: 10.1016/j.jconrel.2010.02.029. Epub 2010 Mar 2.

PMID:
20202473
44.

Rational design of cationic lipids for siRNA delivery.

Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ.

Nat Biotechnol. 2010 Feb;28(2):172-6. doi: 10.1038/nbt.1602. Epub 2010 Jan 17.

PMID:
20081866
45.

Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells.

Cressman S, Dobson I, Lee JB, Tam YY, Cullis PR.

Bioconjug Chem. 2009 Jul;20(7):1404-11. doi: 10.1021/bc900041f.

PMID:
19534457
46.

Synthetic methylated CpG ODNs are potent in vivo adjuvants when delivered in liposomal nanoparticles.

Chikh G, de Jong SD, Sekirov L, Raney SG, Kazem M, Wilson KD, Cullis PR, Dutz JP, Tam YK.

Int Immunol. 2009 Jul;21(7):757-67. doi: 10.1093/intimm/dxp044. Epub 2009 Jun 5.

PMID:
19502586
47.

The combination of stabilized plasmid lipid particles and lipid nanoparticle encapsulated CpG containing oligodeoxynucleotides as a systemic genetic vaccine.

Wilson KD, de Jong SD, Kazem M, Lall R, Hope MJ, Cullis PR, Tam YK.

J Gene Med. 2009 Jan;11(1):14-25. doi: 10.1002/jgm.1267.

PMID:
19003796
48.

The effect of circulation lifetime and drug-to-lipid ratio of intravenously administered lipid nanoparticles on the biodistribution and immunostimulatory activity of encapsulated CpG-ODN.

Raney SG, Wilson KD, Sekirov L, Chikh G, de Jong SD, Cullis PR, Tam YK.

J Drug Target. 2008 Aug;16(7):564-77. doi: 10.1080/10611860802228756.

PMID:
18686126
49.

Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations.

Johnston MJ, Edwards K, Karlsson G, Cullis PR.

J Liposome Res. 2008;18(2):145-57. doi: 10.1080/08982100802129372 .

PMID:
18569449
50.

Capillary electrophoresis frontal analysis for characterization of alphavbeta3 integrin binding interactions.

Sun Y, Cressman S, Fang N, Cullis PR, Chen DD.

Anal Chem. 2008 May 1;80(9):3105-11. doi: 10.1021/ac701604a. Epub 2008 Mar 27.

PMID:
18366190

Supplemental Content

Loading ...
Support Center