Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

In vivo study of targeted nanomedicine delivery into Langerhans cells by multiphoton laser scanning microscopy.

Kolonics A, Csiszovszki Z, Tőke ER, Lőrincz O, Haluszka D, Szipőcs R.

Exp Dermatol. 2014 Aug;23(8):596-605. doi: 10.1111/exd.12464.

PMID:
24903756
2.

Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes.

Tőke ER, Lőrincz O, Csiszovszki Z, Somogyi E, Felföldi G, Molnár L, Szipőcs R, Kolonics A, Malissen B, Lori F, Trocio J, Bakare N, Horkay F, Romani N, Tripp CH, Stoitzner P, Lisziewicz J.

Gene Ther. 2014 Jun;21(6):566-74. doi: 10.1038/gt.2014.29. Epub 2014 Apr 3.

PMID:
24694539
3.

DermAll nanomedicine for allergen-specific immunotherapy.

Garaczi E, Szabó K, Francziszti L, Csiszovszki Z, Lőrincz O, Tőke ER, Molnár L, Bitai T, Jánossy T, Bata-Csörgő Z, Kemény L, Lisziewicz J.

Nanomedicine. 2013 Nov;9(8):1245-54. doi: 10.1016/j.nano.2013.05.011. Epub 2013 Jun 6.

PMID:
23747740
4.

The effect of LacI autoregulation on the performance of the lactose utilization system in Escherichia coli.

Semsey S, Jauffred L, Csiszovszki Z, Erdossy J, Stéger V, Hansen S, Krishna S.

Nucleic Acids Res. 2013 Jul;41(13):6381-90. doi: 10.1093/nar/gkt351. Epub 2013 May 8.

5.

Specific contacts of the -35 region of the galP1 promoter by RNA polymerase inhibit GalR-mediated DNA looping repression.

Csiszovszki Z, Lewis DE, Le P, Sneppen K, Semsey S.

Nucleic Acids Res. 2012 Nov 1;40(20):10064-72. doi: 10.1093/nar/gks796. Epub 2012 Aug 31.

6.

Structure and function of the D-galactose network in enterobacteria.

Csiszovszki Z, Krishna S, Orosz L, Adhya S, Semsey S.

mBio. 2011 Jun 28;2(4):e00053-11. doi: 10.1128/mBio.00053-11. Print 2011.

7.

Direct and indirect effects in the regulation of overlapping promoters.

Bendtsen KM, Erdossy J, Csiszovszki Z, Svenningsen SL, Sneppen K, Krishna S, Semsey S.

Nucleic Acids Res. 2011 Sep 1;39(16):6879-85. doi: 10.1093/nar/gkr390. Epub 2011 May 23.

8.

Dynamics of the recovery from sRNA-mediated gene silencing.

Semsey S, Benjamin JA, Mitarai N, Krishna S, Csiszovszki Z, Sneppen K, Massé E.

Cell Cycle. 2009 Sep 15;8(18):2863-4. Epub 2009 Sep 30. No abstract available.

PMID:
19729996
9.

Dynamic features of gene expression control by small regulatory RNAs.

Mitarai N, Benjamin JA, Krishna S, Semsey S, Csiszovszki Z, Massé E, Sneppen K.

Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10655-9. doi: 10.1073/pnas.0901466106. Epub 2009 Jun 16.

10.

Identification of cohesive ends and genes encoding the terminase of phage 16-3.

Ganyu A, Csiszovszki Z, Ponyi T, Kern A, Buzás Z, Orosz L, Papp PP.

J Bacteriol. 2005 Apr;187(7):2526-31.

11.

A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA.

Blaha B, Semsey S, Ferenczi S, Csiszovszki Z, Papp PP, Orosz L.

Mol Microbiol. 2004 Nov;54(3):742-54.

12.

Integrative plasmid vector for constructing single-copy reporter systems to study gene regulation in Rhizobium meliloti and related species.

Ferenczi S, Ganyu A, Blaha B, Semsey S, Nagy T, Csiszovszki Z, Orosz L, Papp PP.

Plasmid. 2004 Jul;52(1):57-62.

PMID:
15212892
13.

immX immunity region of rhizobium phage 16-3: two overlapping cistrons of repressor function.

Csiszovszki Z, Buzás Z, Semsey S, Ponyi T, Papp PP, Orosz L.

J Bacteriol. 2003 Aug;185(15):4382-92.

14.

Binding sites of different geometries for the 16-3 phage repressor.

Papp PP, Nagy T, Ferenczi S, Elõ P, Csiszovszki Z, Buzás Z, Patthy A, Orosz L.

Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8790-5.

Supplemental Content

Loading ...
Support Center