Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60

1.

Synthetic Physical Interactions with the Yeast Centrosome.

Howell RSM, Csikász-Nagy A, Thorpe PH.

G3 (Bethesda). 2019 Jul 9;9(7):2183-2194. doi: 10.1534/g3.119.400117.

2.

Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress.

Moreno DF, Parisi E, Yahya G, Vaggi F, Csikász-Nagy A, Aldea M.

Life Sci Alliance. 2019 Apr 15;2(2). pii: e201800277. doi: 10.26508/lsa.201800277. Print 2019 Apr.

3.

Computing with biological switches and clocks.

Dalchau N, Szép G, Hernansaiz-Ballesteros R, Barnes CP, Cardelli L, Phillips A, Csikász-Nagy A.

Nat Comput. 2018;17(4):761-779. doi: 10.1007/s11047-018-9686-x. Epub 2018 Jun 1.

4.

Computational Models of Cell Cycle Transitions.

Hernansaiz-Ballesteros R, Jenkins K, Csikász-Nagy A.

Methods Mol Biol. 2018;1819:297-316. doi: 10.1007/978-1-4939-8618-7_14.

PMID:
30421410
5.

Toward Large-Scale Computational Prediction of Protein Complexes.

Rizzetto S, Csikász-Nagy A.

Methods Mol Biol. 2018;1819:271-295. doi: 10.1007/978-1-4939-8618-7_13.

PMID:
30421409
6.

Context-dependent prediction of protein complexes by SiComPre.

Rizzetto S, Moyseos P, Baldacci B, Priami C, Csikász-Nagy A.

NPJ Syst Biol Appl. 2018 Sep 17;4:37. doi: 10.1038/s41540-018-0073-0. eCollection 2018.

7.

Molecular Filters for Noise Reduction.

Laurenti L, Csikasz-Nagy A, Kwiatkowska M, Cardelli L.

Biophys J. 2018 Jun 19;114(12):3000-3011. doi: 10.1016/j.bpj.2018.05.009.

8.

Single molecules can operate as primitive biological sensors, switches and oscillators.

Hernansaiz-Ballesteros RD, Cardelli L, Csikász-Nagy A.

BMC Syst Biol. 2018 Jun 18;12(1):70. doi: 10.1186/s12918-018-0596-4.

9.

Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans.

Weil T, Santamaría R, Lee W, Rung J, Tocci N, Abbey D, Bezerra AR, Carreto L, Moura GR, Bayés M, Gut IG, Csikasz-Nagy A, Cavalieri D, Berman J, Santos MAS.

mSphere. 2017 Aug 9;2(4). pii: e00167-17. doi: 10.1128/mSphere.00167-17. eCollection 2017 Jul-Aug.

10.

Growth Rate as a Direct Regulator of the Start Network to Set Cell Size.

Aldea M, Jenkins K, Csikász-Nagy A.

Front Cell Dev Biol. 2017 May 26;5:57. doi: 10.3389/fcell.2017.00057. eCollection 2017. Review.

11.

Efficient Switches in Biology and Computer Science.

Cardelli L, Hernansaiz-Ballesteros RD, Dalchau N, Csikász-Nagy A.

PLoS Comput Biol. 2017 Jan 5;13(1):e1005100. doi: 10.1371/journal.pcbi.1005100. eCollection 2017 Jan. No abstract available.

12.

The effects of an editor serving as one of the reviewers during the peer-review process.

Giordan M, Csikasz-Nagy A, Collings AM, Vaggi F.

Version 2. F1000Res. 2016 Apr 14 [revised 2016 Jan 1];5:683. eCollection 2016.

13.

Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish.

Palmisano A, Zámborszky J, Oguz C, Csikász-Nagy A.

Methods Mol Biol. 2017;1524:331-349. Erratum in: Methods Mol Biol. 2017;1524:E1.

PMID:
27815913
14.

Noise Reduction in Complex Biological Switches.

Cardelli L, Csikász-Nagy A, Dalchau N, Tribastone M, Tschaikowski M.

Sci Rep. 2016 Feb 8;6:20214. doi: 10.1038/srep20214.

15.

Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations.

Rizzetto S, Priami C, Csikász-Nagy A.

PLoS Comput Biol. 2015 Oct 22;11(10):e1004424. doi: 10.1371/journal.pcbi.1004424. eCollection 2015 Oct.

16.

Role of Computational Modeling in Understanding Cell Cycle Oscillators.

Csikász-Nagy A, Mura I.

Methods Mol Biol. 2016;1342:59-70. doi: 10.1007/978-1-4939-2957-3_3. Review.

PMID:
26254917
17.

Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe.

Kakui Y, Sunaga T, Arai K, Dodgson J, Ji L, Csikász-Nagy A, Carazo-Salas R, Sato M.

Open Biol. 2015 Jun;5(6):150054. doi: 10.1098/rsob.150054.

18.

Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains.

Rivero D, Berná L, Stefanini I, Baruffini E, Bergerat A, Csikász-Nagy A, De Filippo C, Cavalieri D.

Environ Microbiol. 2015 Aug;17(8):3069-81. doi: 10.1111/1462-2920.12950. Epub 2015 Jul 30.

PMID:
26079802
19.

Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

Honeth G, Schiavinotto T, Vaggi F, Marlow R, Kanno T, Shinomiya I, Lombardi S, Buchupalli B, Graham R, Gazinska P, Ramalingam V, Burchell J, Purushotham AD, Pinder SE, Csikasz-Nagy A, Dontu G.

Stem Cell Reports. 2015 Apr 14;4(4):699-711. doi: 10.1016/j.stemcr.2015.02.013. Epub 2015 Mar 26.

20.

Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock.

Zámborszky J, Csikász-Nagy A, Hong CI.

Fungal Genet Biol. 2014 Oct;71:52-7. doi: 10.1016/j.fgb.2014.08.014. Epub 2014 Sep 17. Review.

PMID:
25239547
21.

An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology.

Fernandes de Abreu DA, Caballero A, Fardel P, Stroustrup N, Chen Z, Lee K, Keyes WD, Nash ZM, López-Moyado IF, Vaggi F, Cornils A, Regenass M, Neagu A, Ostojic I, Liu C, Cho Y, Sifoglu D, Shen Y, Fontana W, Lu H, Csikasz-Nagy A, Murphy CT, Antebi A, Blanc E, Apfeld J, Zhang Y, Alcedo J, Ch'ng Q.

PLoS Genet. 2014 Mar 27;10(3):e1004225. doi: 10.1371/journal.pgen.1004225. eCollection 2014 Mar.

22.

A network approach to mixing delegates at meetings.

Vaggi F, Schiavinotto T, Lawson JL, Chessel A, Dodgson J, Geymonat M, Sato M, Carazo Salas RE, Csikász-Nagy A.

Elife. 2014;3:e02273. doi: 10.7554/eLife.02273. Epub 2014 Feb 4.

23.

Circadian rhythms synchronize mitosis in Neurospora crassa.

Hong CI, Zámborszky J, Baek M, Labiscsak L, Ju K, Lee H, Larrondo LF, Goity A, Chong HS, Belden WJ, Csikász-Nagy A.

Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1397-402. doi: 10.1073/pnas.1319399111. Epub 2014 Jan 13.

24.

Projecting cell polarity into the next decade.

Csikász-Nagy A, Sato M, Carazo Salas RE.

Philos Trans R Soc Lond B Biol Sci. 2013 Sep 23;368(1629):20130001. doi: 10.1098/rstb.2013.0001. Print 2013. No abstract available.

25.

Dynamics of SIN asymmetry establishment.

Bajpai A, Feoktistova A, Chen JS, McCollum D, Sato M, Carazo-Salas RE, Gould KL, Csikász-Nagy A.

PLoS Comput Biol. 2013;9(7):e1003147. doi: 10.1371/journal.pcbi.1003147. Epub 2013 Jul 11.

26.

Cooperation and competition in the dynamics of tissue architecture during homeostasis and tumorigenesis.

Csikász-Nagy A, Escudero LM, Guillaud M, Sedwards S, Baum B, Cavaliere M.

Semin Cancer Biol. 2013 Aug;23(4):293-8. doi: 10.1016/j.semcancer.2013.05.009. Epub 2013 Jun 8.

PMID:
23751796
27.

Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control.

Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E, Albrecht D, Geymonat M, Csikasz-Nagy A, Sato M, Carazo-Salas RE.

Nat Commun. 2013;4:1834. doi: 10.1038/ncomms2813.

28.

In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae.

Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P.

BMC Syst Biol. 2013 Mar 20;7:24. doi: 10.1186/1752-0509-7-24.

29.

Linkers of cell polarity and cell cycle regulation in the fission yeast protein interaction network.

Vaggi F, Dodgson J, Bajpai A, Chessel A, Jordán F, Sato M, Carazo-Salas RE, Csikász-Nagy A.

PLoS Comput Biol. 2012;8(10):e1002732. doi: 10.1371/journal.pcbi.1002732. Epub 2012 Oct 18.

30.

The cell cycle switch computes approximate majority.

Cardelli L, Csikász-Nagy A.

Sci Rep. 2012;2:656. doi: 10.1038/srep00656. Epub 2012 Sep 13.

31.

The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation.

Ferrezuelo F, Colomina N, Palmisano A, Garí E, Gallego C, Csikász-Nagy A, Aldea M.

Nat Commun. 2012;3:1012. doi: 10.1038/ncomms2015.

PMID:
22910358
32.

Transcriptional regulation is a major controller of cell cycle transition dynamics.

Romanel A, Jensen LJ, Cardelli L, Csikász-Nagy A.

PLoS One. 2012;7(1):e29716. doi: 10.1371/journal.pone.0029716. Epub 2012 Jan 6.

33.

Overexpression limits of fission yeast cell-cycle regulators in vivo and in silico.

Moriya H, Chino A, Kapuy O, Csikász-Nagy A, Novák B.

Mol Syst Biol. 2011 Dec 6;7:556. doi: 10.1038/msb.2011.91.

34.

Prosperity is associated with instability in dynamical networks.

Cavaliere M, Sedwards S, Tarnita CE, Nowak MA, Csikász-Nagy A.

J Theor Biol. 2012 Apr 21;299:126-38. doi: 10.1016/j.jtbi.2011.09.005. Epub 2011 Sep 22.

35.

Molecular network dynamics of cell cycle control: transitions to start and finish.

Csikász-Nagy A, Palmisano A, Zámborszky J.

Methods Mol Biol. 2011;761:277-91. doi: 10.1007/978-1-61779-182-6_19. Review.

PMID:
21755456
36.

Role of mRNA Gestation and Senescence in Noise Reduction during the Cell Cycle.

Csikász-Nagy A, Mura I.

Stud Health Technol Inform. 2011;162:236-43.

PMID:
21685575
37.

Response dynamics of phosphorelays suggest their potential utility in cell signalling.

Csikász-Nagy A, Cardelli L, Soyer OS.

J R Soc Interface. 2011 Apr 6;8(57):480-8. doi: 10.1098/rsif.2010.0336. Epub 2010 Aug 11.

38.

Role of mRNA gestation and senescence in noise reduction during the cell cycle.

Csikász-Nagy A, Mura I.

In Silico Biol. 2010;10(1):81-8. doi: 10.3233/ISB-2010-0416.

PMID:
22430223
39.

Restriction point control of the mammalian cell cycle via the cyclin E/Cdk2:p27 complex.

Conradie R, Bruggeman FJ, Ciliberto A, Csikász-Nagy A, Novák B, Westerhoff HV, Snoep JL.

FEBS J. 2010 Jan;277(2):357-67. doi: 10.1111/j.1742-4658.2009.07473.x. Epub 2009 Dec 10.

40.

Regulating the total level of a signaling protein can vary its dynamics in a range from switch like ultrasensitivity to adaptive responses.

Soyer OS, Kuwahara H, Csikász-Nagy A.

FEBS J. 2009 Jun;276(12):3290-8. doi: 10.1111/j.1742-4658.2009.07054.x. Epub 2009 May 5.

41.

Minimum criteria for DNA damage-induced phase advances in circadian rhythms.

Hong CI, Zámborszky J, Csikász-Nagy A.

PLoS Comput Biol. 2009 May;5(5):e1000384. doi: 10.1371/journal.pcbi.1000384. Epub 2009 May 8.

42.

Computational systems biology of the cell cycle.

Csikász-Nagy A.

Brief Bioinform. 2009 Jul;10(4):424-34. doi: 10.1093/bib/bbp005. Epub 2009 Mar 6. Review.

PMID:
19270018
43.

Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation.

Csikász-Nagy A, Kapuy O, Tóth A, Pál C, Jensen LJ, Uhlmann F, Tyson JJ, Novák B.

Mol Syst Biol. 2009;5:236. doi: 10.1038/msb.2008.73. Epub 2009 Jan 20.

44.

Reverse engineering models of cell cycle regulation.

Csikász-Nagy A, Novák B, Tyson JJ.

Adv Exp Med Biol. 2008;641:88-97. Review.

PMID:
18783174
45.

Stochastic Petri Net extension of a yeast cell cycle model.

Mura I, Csikász-Nagy A.

J Theor Biol. 2008 Oct 21;254(4):850-60. doi: 10.1016/j.jtbi.2008.07.019. Epub 2008 Jul 24.

PMID:
18703074
46.

Adaptive dynamics with a single two-state protein.

Csikász-Nagy A, Soyer OS.

J R Soc Interface. 2008 Aug 6;5 Suppl 1:S41-7. doi: 10.1098/rsif.2008.0099.focus.

47.

Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.

Zámborszky J, Hong CI, Csikász Nagy A.

J Biol Rhythms. 2007 Dec;22(6):542-53.

PMID:
18057329
48.

Spatial controls for growth zone formation during the fission yeast cell cycle.

Csikász-Nagy A, Gyorffy B, Alt W, Tyson JJ, Novák B.

Yeast. 2008 Jan;25(1):59-69.

49.

Irreversible cell-cycle transitions are due to systems-level feedback.

Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A.

Nat Cell Biol. 2007 Jul;9(7):724-8.

PMID:
17603504
50.

Modeling the septation initiation network (SIN) in fission yeast cells.

Csikász-Nagy A, Kapuy O, Gyorffy B, Tyson JJ, Novák B.

Curr Genet. 2007 Apr;51(4):245-55. Epub 2007 Mar 6.

PMID:
17340144

Supplemental Content

Loading ...
Support Center