Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Csanády L:

Molecular Structure of the Human CFTR Ion Channel. Liu F et al. Cell. (2017)

STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Csanády L et al. Physiol Rev. (2019)

CFTR gating: Invisible transitions made visible. Csanády L et al. J Gen Physiol. (2017)

Search results

Items: 1 to 20 of 45

1.

Selective profiling of N- and C-terminal nucleotide-binding sites in a TRPM2 channel.

Tóth B, Iordanov I, Csanády L.

J Gen Physiol. 2020 May 4;152(5). pii: e201912533. doi: 10.1085/jgp.201912533.

PMID:
32211872
2.

Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations.

Csanády L, Töröcsik B.

Elife. 2019 Jun 17;8. pii: e46450. doi: 10.7554/eLife.46450.

3.

Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates.

Iordanov I, Tóth B, Szollosi A, Csanády L.

Elife. 2019 Apr 2;8. pii: e44556. doi: 10.7554/eLife.44556.

4.

STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL.

Csanády L, Vergani P, Gadsby DC.

Physiol Rev. 2019 Jan 1;99(1):707-738. doi: 10.1152/physrev.00007.2018. Review.

5.

Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation.

Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L.

Elife. 2018 May 10;7. pii: e36409. doi: 10.7554/eLife.36409.

6.

Ion channels as targets to treat cystic fibrosis lung disease.

Martin SL, Saint-Criq V, Hwang TC, Csanády L.

J Cyst Fibros. 2018 Mar;17(2S):S22-S27. doi: 10.1016/j.jcf.2017.10.006. Epub 2017 Nov 6. Review.

7.

Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions.

Sorum B, Töröcsik B, Csanády L.

Elife. 2017 Sep 25;6. pii: e29013. doi: 10.7554/eLife.29013.

8.

A new target for G protein signaling.

Csanády L.

Elife. 2017 Sep 11;6. pii: e31106. doi: 10.7554/eLife.31106.

9.

Molecular Structure of the Human CFTR Ion Channel.

Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J.

Cell. 2017 Mar 23;169(1):85-95.e8. doi: 10.1016/j.cell.2017.02.024.

10.

CFTR gating: Invisible transitions made visible.

Csanády L.

J Gen Physiol. 2017 Apr 3;149(4):413-416. doi: 10.1085/jgp.201711777. Epub 2017 Mar 6. No abstract available.

11.

The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity.

Iordanov I, Mihályi C, Tóth B, Csanády L.

Elife. 2016 Jul 6;5. pii: e17600. doi: 10.7554/eLife.17600.

12.

Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization.

Mihályi C, Töröcsik B, Csanády L.

Elife. 2016 Jun 21;5. pii: e18164. doi: 10.7554/eLife.18164.

13.

A single active catalytic site is sufficient to promote transport in P-glycoprotein.

Bársony O, Szalóki G, Türk D, Tarapcsák S, Gutay-Tóth Z, Bacsó Z, Holb IJ, Székvölgyi L, Szabó G, Csanády L, Szakács G, Goda K.

Sci Rep. 2016 Apr 27;6:24810. doi: 10.1038/srep24810.

14.

Timing of CFTR pore opening and structure of its transition state.

Sorum B, Czégé D, Csanády L.

Cell. 2015 Oct 22;163(3):724-33. doi: 10.1016/j.cell.2015.09.052. Epub 2015 Oct 22.

15.

Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2'-phosphate.

Tóth B, Iordanov I, Csanády L.

J Gen Physiol. 2015 May;145(5):419-30. doi: 10.1085/jgp.201511377.

16.

Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating.

Tóth B, Iordanov I, Csanády L.

Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16949-54. doi: 10.1073/pnas.1412449111. Epub 2014 Nov 10.

17.

Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.

Csanády L, Töröcsik B.

J Gen Physiol. 2014 Oct;144(4):321-36. doi: 10.1085/jgp.201411246.

18.

Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating.

Csanády L, Töröcsik B.

J Gen Physiol. 2014 Feb;143(2):269-87. doi: 10.1085/jgp.201311089. Epub 2014 Jan 13.

19.

Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.

Csanády L, Mihályi C, Szollosi A, Töröcsik B, Vergani P.

J Gen Physiol. 2013 Jul;142(1):61-73. doi: 10.1085/jgp.201210954. Epub 2013 Jun 10.

20.

Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents.

Tóth B, Csanády L.

Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13440-5. doi: 10.1073/pnas.1204702109. Epub 2012 Jul 30.

Supplemental Content

Loading ...
Support Center