Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Csörgő B[au]:

Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Lázár V et al. Nat Microbiol. (2018)

Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Nyerges Á et al. Proc Natl Acad Sci U S A. (2018)

Bacterial evolution of antibiotic hypersensitivity. Lázár V et al. Mol Syst Biol. (2013)

Search results

Items: 22

1.

Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance.

Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C.

Nat Commun. 2019 Oct 4;10(1):4538. doi: 10.1038/s41467-019-12364-6.

2.

Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations.

Apjok G, Boross G, Nyerges Á, Fekete G, Lázár V, Papp B, Pál C, Csörgő B.

Mol Biol Evol. 2019 Aug 1;36(8):1601-1611. doi: 10.1093/molbev/msz109.

3.

Evolthon: A community endeavor to evolve lab evolution.

Kaminski Strauss S, Schirman D, Jona G, Brooks AN, Kunjapur AM, Nguyen Ba AN, Flint A, Solt A, Mershin A, Dixit A, Yona AH, Csörgő B, Busby BP, Hennig BP, Pál C, Schraivogel D, Schultz D, Wernick DG, Agashe D, Levi D, Zabezhinsky D, Russ D, Sass E, Tamar E, Herz E, Levy ED, Church GM, Yelin I, Nachman I, Gerst JE, Georgeson JM, Adamala KP, Steinmetz LM, Rübsam M, Ralser M, Klutstein M, Desai MM, Walunjkar N, Yin N, Aharon Hefetz N, Jakimo N, Snitser O, Adini O, Kumar P, Soo Hoo Smith R, Zeidan R, Hazan R, Rak R, Kishony R, Johnson S, Nouriel S, Vonesch SC, Foster S, Dagan T, Wein T, Karydis T, Wannier TM, Stiles T, Olin-Sandoval V, Mueller WF, Bar-On YM, Dahan O, Pilpel Y.

PLoS Biol. 2019 Mar 29;17(3):e3000182. doi: 10.1371/journal.pbio.3000182. eCollection 2019 Mar.

4.

Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance.

Nyerges Á, Csörgő B, Draskovits G, Kintses B, Szili P, Ferenc G, Révész T, Ari E, Nagy I, Bálint B, Vásárhelyi BM, Bihari P, Számel M, Balogh D, Papp H, Kalapis D, Papp B, Pál C.

Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):E5726-E5735. doi: 10.1073/pnas.1801646115. Epub 2018 Jun 5.

5.

Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides.

Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, Nyerges Á, Györkei Á, Kincses A, Dér A, Walter FR, Deli MA, Urbán E, Hegedűs Z, Olajos G, Méhi O, Bálint B, Nagy I, Martinek TA, Papp B, Pál C.

Nat Microbiol. 2018 Jun;3(6):718-731. doi: 10.1038/s41564-018-0164-0. Epub 2018 May 24.

6.

Correction: Phenotypic heterogeneity promotes adaptive evolution.

Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörgő B, Nyerges Á, Szamecz B, Fekete G, Papp B, Araújo H, Oliveira JL, Moura G, Santos MAS, Székely T Jr, Balázsi G, Pál C.

PLoS Biol. 2017 Jun 20;15(6):e1002607. doi: 10.1371/journal.pbio.1002607. eCollection 2017 Jun.

7.

Phenotypic heterogeneity promotes adaptive evolution.

Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörgő B, Nyerges Á, Szamecz B, Fekete G, Papp B, Araújo H, Oliveira JL, Moura G, Santos MAS, Székely T Jr, Balázsi G, Pál C.

PLoS Biol. 2017 May 9;15(5):e2000644. doi: 10.1371/journal.pbio.2000644. eCollection 2017 May. Erratum in: PLoS Biol. 2017 Jun 20;15(6):e1002607.

8.

Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis.

Umenhoffer K, Draskovits G, Nyerges Á, Karcagi I, Bogos B, Tímár E, Csörgő B, Herczeg R, Nagy I, Fehér T, Pál C, Pósfai G.

ACS Synth Biol. 2017 Aug 18;6(8):1471-1483. doi: 10.1021/acssynbio.6b00378. Epub 2017 Apr 26.

PMID:
28426191
9.

System-level genome editing in microbes.

Csörgő B, Nyerges Á, Pósfai G, Fehér T.

Curr Opin Microbiol. 2016 Oct;33:113-122. doi: 10.1016/j.mib.2016.07.005. Epub 2016 Jul 26. Review.

PMID:
27472027
10.

Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

Szappanos B, Fritzemeier J, Csörgő B, Lázár V, Lu X, Fekete G, Bálint B, Herczeg R, Nagy I, Notebaart RA, Lercher MJ, Pál C, Papp B.

Nat Commun. 2016 May 20;7:11607. doi: 10.1038/ncomms11607.

11.

A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species.

Nyerges Á, Csörgő B, Nagy I, Bálint B, Bihari P, Lázár V, Apjok G, Umenhoffer K, Bogos B, Pósfai G, Pál C.

Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub 2016 Feb 16.

12.

Network-level architecture and the evolutionary potential of underground metabolism.

Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei Á, Bogos B, Lázár V, Spohn R, Csörgő B, Wagner A, Ruppin E, Pál C, Papp B.

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11762-7. doi: 10.1073/pnas.1406102111. Epub 2014 Jul 28.

13.

Perturbation of iron homeostasis promotes the evolution of antibiotic resistance.

Méhi O, Bogos B, Csörgő B, Pál F, Nyerges A, Papp B, Pál C.

Mol Biol Evol. 2014 Oct;31(10):2793-804. doi: 10.1093/molbev/msu223. Epub 2014 Jul 24.

14.

Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network.

Lázár V, Nagy I, Spohn R, Csörgő B, Györkei Á, Nyerges Á, Horváth B, Vörös A, Busa-Fekete R, Hrtyan M, Bogos B, Méhi O, Fekete G, Szappanos B, Kégl B, Papp B, Pál C.

Nat Commun. 2014 Jul 8;5:4352. doi: 10.1038/ncomms5352.

15.

Conditional DNA repair mutants enable highly precise genome engineering.

Nyerges Á, Csorgő B, Nagy I, Latinovics D, Szamecz B, Pósfai G, Pál C.

Nucleic Acids Res. 2014 Apr;42(8):e62. doi: 10.1093/nar/gku105. Epub 2014 Feb 5.

16.

Bacterial evolution of antibiotic hypersensitivity.

Lázár V, Pal Singh G, Spohn R, Nagy I, Horváth B, Hrtyan M, Busa-Fekete R, Bogos B, Méhi O, Csörgő B, Pósfai G, Fekete G, Szappanos B, Kégl B, Papp B, Pál C.

Mol Syst Biol. 2013 Oct 29;9:700. doi: 10.1038/msb.2013.57.

17.

Genomewide screen for modulators of evolvability under toxic antibiotic exposure.

Méhi O, Bogos B, Csörgo B, Pál C.

Antimicrob Agents Chemother. 2013 Jul;57(7):3453-6. doi: 10.1128/AAC.02454-12. Epub 2013 May 13.

18.

Competition between transposable elements and mutator genes in bacteria.

Fehér T, Bogos B, Méhi O, Fekete G, Csörgo B, Kovács K, Pósfai G, Papp B, Hurst LD, Pál C.

Mol Biol Evol. 2012 Oct;29(10):3153-9. Epub 2012 Apr 23.

19.

Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs.

Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G.

Microb Cell Fact. 2012 Jan 20;11:11. doi: 10.1186/1475-2859-11-11.

20.

Scarless engineering of the Escherichia coli genome.

Fehér T, Karcagi I, Gyorfy Z, Umenhoffer K, Csörgo B, Pósfai G.

Methods Mol Biol. 2008;416:251-9. doi: 10.1007/978-1-59745-321-9_16.

PMID:
18392972
21.

Directed homologous recombination for genome engineering in Escherichia coli.

Csörgö B, Pósfai G.

Acta Biol Hung. 2007;58 Suppl:1-10.

PMID:
18297790
22.

The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse.

Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csörgo B, Pósfai G, Weinstock GM, Blattner FR.

J Bacteriol. 2008 Apr;190(7):2597-606. doi: 10.1128/JB.01695-07. Epub 2008 Feb 1.

Supplemental Content

Loading ...
Support Center