Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 96

1.

A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions.

Cheng Z, Shurina BA, Bethel CR, Thomas PW, Marshall SH, Thomas CA, Yang K, Kimble RL, Montgomery JS, Orischak MG, Miller CM, Tennenbaum JL, Nix JC, Tierney DL, Fast W, Bonomo RA, Page RC, Crowder MW.

MBio. 2019 Nov 19;10(6). pii: e02412-19. doi: 10.1128/mBio.02412-19.

2.

Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-β-Lactamases.

Chen AY, Thomas PW, Cheng Z, Xu NY, Tierney DL, Crowder MW, Fast W, Cohen SM.

ChemMedChem. 2019 Jul 3;14(13):1271-1282. doi: 10.1002/cmdc.201900172. Epub 2019 May 24.

PMID:
31124602
3.

A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1.

Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, Mason K, Cumming E, Zhang H, Kimble RL, Fullington S, Bretz SL, Nix JC, Bonomo RA, Tierney DL, Page RC, Crowder MW.

Biochemistry. 2018 Sep 4;57(35):5218-5229. doi: 10.1021/acs.biochem.8b00728. Epub 2018 Aug 21.

4.

Correction to Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.

Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM.

J Med Chem. 2018 Jul 26;61(14):6400. doi: 10.1021/acs.jmedchem.8b01057. Epub 2018 Jul 18. No abstract available.

PMID:
30019584
5.

Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity.

Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, Clayton D, Miller C, Bethel CR, VanPelt J, Tierney DL, Page RC, Bonomo RA, Fast W, Crowder MW.

J Biol Chem. 2018 Aug 10;293(32):12606-12618. doi: 10.1074/jbc.RA118.003835. Epub 2018 Jun 16.

6.

The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters.

Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW.

Trends Pharmacol Sci. 2018 Jul;39(7):635-647. doi: 10.1016/j.tips.2018.03.007. Epub 2018 Apr 18. Review.

7.

Probing the Interaction of Aspergillomarasmine A with Metallo-β-lactamases NDM-1, VIM-2, and IMP-7.

Bergstrom A, Katko A, Adkins Z, Hill J, Cheng Z, Burnett M, Yang H, Aitha M, Mehaffey MR, Brodbelt JS, Tehrani KHME, Martin NI, Bonomo RA, Page RC, Tierney DL, Fast W, Wright GD, Crowder MW.

ACS Infect Dis. 2018 Feb 9;4(2):135-145. doi: 10.1021/acsinfecdis.7b00106. Epub 2017 Nov 9.

8.

Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity.

Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG, Williams C, Poth R, Morris M, Lahey O, Nix JC, Tierney DL, Page RC, Crowder MW, Bonomo RA, Fast W.

ACS Infect Dis. 2017 Dec 8;3(12):927-940. doi: 10.1021/acsinfecdis.7b00128. Epub 2017 Oct 11.

9.

A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases.

Lisa MN, Palacios AR, Aitha M, González MM, Moreno DM, Crowder MW, Bonomo RA, Spencer J, Tierney DL, Llarrull LI, Vila AJ.

Nat Commun. 2017 Sep 14;8(1):538. doi: 10.1038/s41467-017-00601-9.

10.

Substituent Effects on the Coordination Chemistry of Metal-Binding Pharmacophores.

Craig WR, Baker TW, Marts AR, DeGenova DT, Martin DP, Reed GC, McCarrick RM, Crowder MW, Cohen SM, Tierney DL.

Inorg Chem. 2017 Oct 2;56(19):11721-11728. doi: 10.1021/acs.inorgchem.7b01661. Epub 2017 Sep 12.

11.

Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.

Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM.

J Med Chem. 2017 Sep 14;60(17):7267-7283. doi: 10.1021/acs.jmedchem.7b00407. Epub 2017 Aug 30. Erratum in: J Med Chem. 2018 Jul 26;61(14):6400.

12.

Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic Acid as a First-in-Class Low-Cytotoxic Nanomolar Metallo β-Lactamase Inhibitor.

Shin WS, Bergstrom A, Bonomo RA, Crowder MW, Muthyala R, Sham YY.

ChemMedChem. 2017 Jun 7;12(11):845-849. doi: 10.1002/cmdc.201700182. Epub 2017 May 22.

13.

Biochemical characterization and zinc binding group (ZBGs) inhibition studies on the catalytic domain of MMP7 (cdMMP7).

Meng F, Yang H, Jack C, Zhang H, Moller A, Spivey D, Page RC, Tierney DL, Crowder MW.

J Inorg Biochem. 2016 Dec;165:7-17. doi: 10.1016/j.jinorgbio.2016.10.005. Epub 2016 Oct 14.

PMID:
27755977
14.

Biochemical and spectroscopic characterization of the catalytic domain of MMP16 (cdMMP16).

Meng F, Yang H, Aitha M, George S, Tierney DL, Crowder MW.

J Biol Inorg Chem. 2016 Jul;21(4):523-35. doi: 10.1007/s00775-016-1362-y. Epub 2016 May 26.

PMID:
27229514
15.

Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis.

Aitha M, Al-Adbul-Wahid S, Tierney DL, Crowder MW.

Medchemcomm. 2016 Jan 1;7(1):194-201. Epub 2016 Jan 4.

16.

Investigating the position of the hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis and inhibitor binding.

Aitha M, Moller AJ, Sahu ID, Horitani M, Tierney DL, Crowder MW.

J Inorg Biochem. 2016 Mar;156:35-9. doi: 10.1016/j.jinorgbio.2015.10.011. Epub 2015 Oct 22.

17.

Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

Yang H, Makaroff K, Paz N, Aitha M, Crowder MW, Tierney DL.

Biochemistry. 2015 Jun 16;54(23):3631-9. doi: 10.1021/acs.biochem.5b00379. Epub 2015 Jun 8.

PMID:
26018933
18.

Meropenem and chromacef intermediates observed in IMP-25 metallo-β-lactamase-catalyzed hydrolysis.

Oelschlaeger P, Aitha M, Yang H, Kang JS, Zhang AL, Liu EM, Buynak JD, Crowder MW.

Antimicrob Agents Chemother. 2015 Jul;59(7):4326-30. doi: 10.1128/AAC.04409-14. Epub 2015 Apr 27.

19.

Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy.

Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW.

J Biol Inorg Chem. 2015 Apr;20(3):585-94. doi: 10.1007/s00775-015-1244-8. Epub 2015 Feb 10.

20.

Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2.

Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW.

Biochemistry. 2014 Nov 25;53(46):7321-31. doi: 10.1021/bi500916y. Epub 2014 Nov 13.

21.

Targeting metallo-carbapenemases via modulation of electronic properties of cephalosporins.

Yang H, Young H, Yu S, Sutton L, Crowder MW.

Biochem J. 2014 Dec 1;464(2):271-9. doi: 10.1042/BJ20140364.

PMID:
25220027
22.

Diaryl-substituted azolylthioacetamides: Inhibitor discovery of New Delhi metallo-β-lactamase-1 (NDM-1).

Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW.

ChemMedChem. 2014 Nov;9(11):2445-8. doi: 10.1002/cmdc.201402249. Epub 2014 Jul 22.

PMID:
25048031
23.

Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1.

Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL.

J Am Chem Soc. 2014 May 21;136(20):7273-85. doi: 10.1021/ja410376s. Epub 2014 May 12.

24.

Dilution of dipolar interactions in a spin-labeled, multimeric metalloenzyme for DEER studies.

Aitha M, Richmond TK, Hu Z, Hetrick A, Reese R, Gunther A, McCarrick R, Bennett B, Crowder MW.

J Inorg Biochem. 2014 Jul;136:40-6. doi: 10.1016/j.jinorgbio.2014.03.010. Epub 2014 Apr 1.

25.

New β-phospholactam as a carbapenem transition state analog: Synthesis of a broad-spectrum inhibitor of metallo-β-lactamases.

Yang KW, Feng L, Yang SK, Aitha M, LaCuran AE, Oelschlaeger P, Crowder MW.

Bioorg Med Chem Lett. 2013 Nov 1;23(21):5855-9. doi: 10.1016/j.bmcl.2013.08.098. Epub 2013 Sep 8.

26.

A novel fluorogenic substrate for dinuclear Zn(II)-containing metallo-β-lactamases.

Zhang YL, Xiao JM, Feng JL, Yang KW, Feng L, Zhou LS, Crowder MW.

Bioorg Med Chem Lett. 2013 Mar 15;23(6):1676-9. doi: 10.1016/j.bmcl.2013.01.071. Epub 2013 Jan 26. Erratum in: Bioorg Med Chem Lett. 2013 May 1;23(9):2813. Zhang, Yin-Lin [corrected to Zhang, Yi-Lin].

PMID:
23411077
27.

Raman spectra of interchanging β-lactamase inhibitor intermediates on the millisecond time scale.

Heidari Torkabadi H, Che T, Shou J, Shanmugam S, Crowder MW, Bonomo RA, Pusztai-Carey M, Carey PR.

J Am Chem Soc. 2013 Feb 27;135(8):2895-8. doi: 10.1021/ja311440p. Epub 2013 Feb 18.

28.

Novel fluorescent risedronates: synthesis, photodynamic inactivation and imaging of Bacillus subtilis.

Zhou LS, Yang KW, Feng L, Xiao JM, Liu CC, Zhang YL, Crowder MW.

Bioorg Med Chem Lett. 2013 Feb 15;23(4):949-54. doi: 10.1016/j.bmcl.2012.12.051. Epub 2012 Dec 25.

PMID:
23321562
29.

N-heterocyclic dicarboxylic acids: broad-spectrum inhibitors of metallo-β-lactamases with co-antibacterial effect against antibiotic-resistant bacteria.

Feng L, Yang KW, Zhou LS, Xiao JM, Yang X, Zhai L, Zhang YL, Crowder MW.

Bioorg Med Chem Lett. 2012 Aug 15;22(16):5185-9. doi: 10.1016/j.bmcl.2012.06.074. Epub 2012 Jul 1.

PMID:
22796180
30.

Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1.

Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW.

Biochemistry. 2012 May 8;51(18):3839-47. doi: 10.1021/bi300056y. Epub 2012 Apr 25.

PMID:
22482529
31.

Characterization of Zn(II)-responsive ribosomal proteins YkgM and L31 in E. coli.

Hensley MP, Gunasekera TS, Easton JA, Sigdel TK, Sugarbaker SA, Klingbeil L, Breece RM, Tierney DL, Crowder MW.

J Inorg Biochem. 2012 Jun;111:164-72. doi: 10.1016/j.jinorgbio.2011.11.022. Epub 2011 Dec 2.

32.

Zn(II) binding to Escherichia coli 70S ribosomes.

Hensley MP, Tierney DL, Crowder MW.

Biochemistry. 2011 Nov 22;50(46):9937-9. doi: 10.1021/bi200619w. Epub 2011 Oct 26.

33.

Structural and kinetic studies on metallo-β-lactamase IMP-1.

Griffin DH, Richmond TK, Sanchez C, Moller AJ, Breece RM, Tierney DL, Bennett B, Crowder MW.

Biochemistry. 2011 Oct 25;50(42):9125-34. doi: 10.1021/bi200839h. Epub 2011 Sep 28.

PMID:
21928807
34.

Converting GLX2-1 into an active glyoxalase II.

Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, Bennett B, Makaroff CA, Crowder MW.

Biochemistry. 2010 Sep 21;49(37):8228-36. doi: 10.1021/bi1010865.

35.

The metal ion requirements of Arabidopsis thaliana Glx2-2 for catalytic activity.

Limphong P, McKinney RM, Adams NE, Makaroff CA, Bennett B, Crowder MW.

J Biol Inorg Chem. 2010 Feb;15(2):249-58. doi: 10.1007/s00775-009-0593-6. Epub 2009 Oct 16.

PMID:
19834746
36.

Absence of ZnuABC-mediated zinc uptake affects virulence-associated phenotypes of uropathogenic Escherichia coli CFT073 under Zn(II)-depleted conditions.

Gunasekera TS, Herre AH, Crowder MW.

FEMS Microbiol Lett. 2009 Nov;300(1):36-41. doi: 10.1111/j.1574-6968.2009.01762.x. Epub 2009 Aug 19.

37.

Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity.

Limphong P, Nimako G, Thomas PW, Fast W, Makaroff CA, Crowder MW.

Biochemistry. 2009 Sep 15;48(36):8491-3. doi: 10.1021/bi9010539.

38.

Motion of the zinc ions in catalysis by a dizinc metallo-beta-lactamase.

Breece RM, Hu Z, Bennett B, Crowder MW, Tierney DL.

J Am Chem Soc. 2009 Aug 26;131(33):11642-3. doi: 10.1021/ja902534b.

39.

Differential binding of Co(II) and Zn(II) to metallo-beta-lactamase Bla2 from Bacillus anthracis.

Hawk MJ, Breece RM, Hajdin CE, Bender KM, Hu Z, Costello AL, Bennett B, Tierney DL, Crowder MW.

J Am Chem Soc. 2009 Aug 5;131(30):10753-62. doi: 10.1021/ja900296u.

40.

Human glyoxalase II contains an Fe(II)Zn(II) center but is active as a mononuclear Zn(II) enzyme.

Limphong P, McKinney RM, Adams NE, Bennett B, Makaroff CA, Gunasekera T, Crowder MW.

Biochemistry. 2009 Jun 16;48(23):5426-34. doi: 10.1021/bi9001375.

41.

Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1.

Hu Z, Spadafora LJ, Hajdin CE, Bennett B, Crowder MW.

Biochemistry. 2009 Apr 7;48(13):2981-9. doi: 10.1021/bi802295z.

42.

Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor.

Salsbury FR Jr, Crowder MW, Kingsmore SF, Huntley JJ.

J Mol Model. 2009 Feb;15(2):133-45. doi: 10.1007/s00894-008-0410-0. Epub 2008 Nov 28.

PMID:
19039608
43.

Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.

Hu Z, Periyannan G, Bennett B, Crowder MW.

J Am Chem Soc. 2008 Oct 29;130(43):14207-16. doi: 10.1021/ja8035916. Epub 2008 Oct 3.

44.

Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2.

Limphong P, Crowder MW, Bennett B, Makaroff CA.

Biochem J. 2009 Jan 1;417(1):323-30. doi: 10.1042/BJ20081151.

45.

Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein.

Holdorf MM, Bennett B, Crowder MW, Makaroff CA.

J Inorg Biochem. 2008 Sep;102(9):1825-30. doi: 10.1016/j.jinorgbio.2008.06.003. Epub 2008 Jun 13.

46.

Metal content of metallo-beta-lactamase L1 is determined by the bioavailability of metal ions.

Hu Z, Gunasekera TS, Spadafora L, Bennett B, Crowder MW.

Biochemistry. 2008 Jul 29;47(30):7947-53. doi: 10.1021/bi8004768. Epub 2008 Jul 3.

47.

Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions.

Sharma N, Hu Z, Crowder MW, Bennett B.

J Am Chem Soc. 2008 Jul 2;130(26):8215-22. doi: 10.1021/ja0774562. Epub 2008 Jun 4.

48.

Folding strategy to prepare Co(II)-substituted metallo-beta-lactamase L1.

Hu Z, Periyannan GR, Crowder MW.

Anal Biochem. 2008 Jul 15;378(2):177-83. doi: 10.1016/j.ab.2008.04.007. Epub 2008 Apr 7.

49.

Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli.

Yatsunyk LA, Easton JA, Kim LR, Sugarbaker SA, Bennett B, Breece RM, Vorontsov II, Tierney DL, Crowder MW, Rosenzweig AC.

J Biol Inorg Chem. 2008 Feb;13(2):271-88. Epub 2007 Nov 20.

50.

Structural basis for the role of Asp-120 in metallo-beta-lactamases.

Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J.

Biochemistry. 2007 Sep 18;46(37):10664-74. Epub 2007 Aug 23.

PMID:
17715946

Supplemental Content

Loading ...
Support Center