Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Zebrafish facial lymphatics develop through sequential addition of venous and non-venous progenitors.

Eng TC, Chen W, Okuda KS, Misa JP, Padberg Y, Crosier KE, Crosier PS, Hall CJ, Schulte-Merker S, Hogan BM, Astin JW.

EMBO Rep. 2019 May;20(5). pii: e47079. doi: 10.15252/embr.201847079. Epub 2019 Mar 15.

PMID:
30877134
2.

Liposome-Mediated Drug Delivery in Larval Zebrafish to Manipulate Macrophage Function.

Wu Z, Koh B, Lawrence LM, Kanamala M, Pool B, Svirskis D, Dalbeth N, Astin JW, Crosier KE, Crosier PS, Hall CJ.

Zebrafish. 2019 Apr;16(2):171-181. doi: 10.1089/zeb.2018.1681. Epub 2019 Feb 6.

PMID:
30724716
3.

Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model.

Britto DD, Wyroba B, Chen W, Lockwood RA, Tran KB, Shepherd PR, Hall CJ, Crosier KE, Crosier PS, Astin JW.

Dis Model Mech. 2018 Nov 29;11(12). pii: dmm035998. doi: 10.1242/dmm.035998.

4.

Blocking fatty acid-fueled mROS production within macrophages alleviates acute gouty inflammation.

Hall CJ, Sanderson LE, Lawrence LM, Pool B, van der Kroef M, Ashimbayeva E, Britto D, Harper JL, Lieschke GJ, Astin JW, Crosier KE, Dalbeth N, Crosier PS.

J Clin Invest. 2018 May 1;128(5):1752-1771. doi: 10.1172/JCI94584. Epub 2018 Mar 26.

5.

The innate immune cell response to bacterial infection in larval zebrafish is light-regulated.

Du LY, Darroch H, Keerthisinghe P, Ashimbayeva E, Astin JW, Crosier KE, Crosier PS, Warman G, Cheeseman J, Hall CJ.

Sci Rep. 2017 Oct 4;7(1):12657. doi: 10.1038/s41598-017-12842-1.

6.

Innate immune cells and bacterial infection in zebrafish.

Astin JW, Keerthisinghe P, Du L, Sanderson LE, Crosier KE, Crosier PS, Hall CJ.

Methods Cell Biol. 2017;138:31-60. doi: 10.1016/bs.mcb.2016.08.002. Epub 2016 Oct 8. Review.

PMID:
28129850
7.

A whole animal chemical screen approach to identify modifiers of intestinal neutrophilic inflammation.

Oehlers SH, Flores MV, Hall CJ, Wang L, Ko DC, Crosier KE, Crosier PS.

FEBS J. 2017 Feb;284(3):402-413. doi: 10.1111/febs.13976. Epub 2017 Jan 9.

8.

A zebrafish model of inflammatory lymphangiogenesis.

Okuda KS, Misa JP, Oehlers SH, Hall CJ, Ellett F, Alasmari S, Lieschke GJ, Crosier KE, Crosier PS, Astin JW.

Biol Open. 2015 Sep 14;4(10):1270-80. doi: 10.1242/bio.013540.

9.

An inducible transgene reports activation of macrophages in live zebrafish larvae.

Sanderson LE, Chien AT, Astin JW, Crosier KE, Crosier PS, Hall CJ.

Dev Comp Immunol. 2015 Nov;53(1):63-9. doi: 10.1016/j.dci.2015.06.013. Epub 2015 Jun 26.

PMID:
26123890
10.

An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis.

Astin JW, Jamieson SM, Eng TC, Flores MV, Misa JP, Chien A, Crosier KE, Crosier PS.

Mol Cancer Ther. 2014 Oct;13(10):2450-62. doi: 10.1158/1535-7163.MCT-14-0469-T. Epub 2014 Jul 22.

11.

Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents.

Hall CJ, Wicker SM, Chien AT, Tromp A, Lawrence LM, Sun X, Krissansen GW, Crosier KE, Crosier PS.

Dis Model Mech. 2014 Sep;7(9):1069-81. doi: 10.1242/dmm.016873. Epub 2014 Jul 18.

12.

Mitochondrial metabolism, reactive oxygen species, and macrophage function-fishing for insights.

Hall CJ, Sanderson LE, Crosier KE, Crosier PS.

J Mol Med (Berl). 2014 Nov;92(11):1119-28. doi: 10.1007/s00109-014-1186-6. Epub 2014 Jun 25. Review.

PMID:
24957262
13.

Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting.

Astin JW, Haggerty MJ, Okuda KS, Le Guen L, Misa JP, Tromp A, Hogan BM, Crosier KE, Crosier PS.

Development. 2014 Jul;141(13):2680-90. doi: 10.1242/dev.106591. Epub 2014 Jun 5.

14.

Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

Hall CJ, Boyle RH, Sun X, Wicker SM, Misa JP, Krissansen GW, Print CG, Crosier KE, Crosier PS.

Nat Commun. 2014 May 23;5:3880. doi: 10.1038/ncomms4880.

PMID:
24852213
15.

Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology.

Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D.

Cytometry A. 2014 Jun;85(6):537-47. doi: 10.1002/cyto.a.22464. Epub 2014 Mar 24.

16.

OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.

Akagi J, Hall CJ, Crosier KE, Cooper JM, Crosier PS, Wlodkowic D.

Curr Protoc Cytom. 2014 Jan 2;67:Unit 9.44.. doi: 10.1002/0471142956.cy0944s67.

PMID:
24510773
17.

Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ, Crosier KE, Crosier PS.

Cell Metab. 2013 Aug 6;18(2):265-78. doi: 10.1016/j.cmet.2013.06.018.

18.

Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.

Wang KI, Salcic Z, Yeh J, Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D.

Biosens Bioelectron. 2013 Oct 15;48:188-96. doi: 10.1016/j.bios.2013.04.033. Epub 2013 Apr 30.

PMID:
23685315
19.

Chemically induced intestinal damage models in zebrafish larvae.

Oehlers SH, Flores MV, Hall CJ, Okuda KS, Sison JO, Crosier KE, Crosier PS.

Zebrafish. 2013 Jun;10(2):184-93. doi: 10.1089/zeb.2012.0824. Epub 2013 Feb 28.

PMID:
23448252
20.

New rationale for large metazoan embryo manipulations on chip-based devices.

Khoshmanesh K, Akagi J, Hall CJ, Crosier KE, Crosier PS, Cooper JM, Wlodkowic D.

Biomicrofluidics. 2012 Jun;6(2):24102-2410214. doi: 10.1063/1.3699971. Epub 2012 Apr 3.

21.

lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish.

Okuda KS, Astin JW, Misa JP, Flores MV, Crosier KE, Crosier PS.

Development. 2012 Jul;139(13):2381-91. doi: 10.1242/dev.077701. Epub 2012 May 23.

22.

Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

Akagi J, Khoshmanesh K, Evans B, Hall CJ, Crosier KE, Cooper JM, Crosier PS, Wlodkowic D.

PLoS One. 2012;7(5):e36630. doi: 10.1371/journal.pone.0036630. Epub 2012 May 14.

23.

Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis.

Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS.

Dis Model Mech. 2012 Jul;5(4):457-67. doi: 10.1242/dmm.009365. Epub 2012 Apr 19.

24.

Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide.

Hall CJ, Flores MV, Oehlers SH, Sanderson LE, Lam EY, Crosier KE, Crosier PS.

Cell Stem Cell. 2012 Feb 3;10(2):198-209. doi: 10.1016/j.stem.2012.01.007.

25.

The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish.

Oehlers SH, Flores MV, Hall CJ, Swift S, Crosier KE, Crosier PS.

Dis Model Mech. 2011 Nov;4(6):832-41. doi: 10.1242/dmm.006122. Epub 2011 Jul 4.

26.

Zebrafish heat shock protein a4 genes in the intestinal epithelium are up-regulated during inflammation.

Crawford KC, Vega Flores M, Oehlers SH, Hall CJ, Crosier KE, Crosier PS.

Genesis. 2011 Dec;49(12):905-11. doi: 10.1002/dvg.20767. Epub 2011 Oct 13.

PMID:
21557452
27.

A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents.

Oehlers SH, Flores MV, Okuda KS, Hall CJ, Crosier KE, Crosier PS.

Dev Dyn. 2011 Jan;240(1):288-98. doi: 10.1002/dvdy.22519.

28.

Topographical distribution of antimicrobial genes in the zebrafish intestine.

Oehlers SH, Flores MV, Chen T, Hall CJ, Crosier KE, Crosier PS.

Dev Comp Immunol. 2011 Mar;35(3):385-91. doi: 10.1016/j.dci.2010.11.008. Epub 2010 Nov 25.

PMID:
21093479
29.

Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties.

Flores MV, Crawford KC, Pullin LM, Hall CJ, Crosier KE, Crosier PS.

Biochem Biophys Res Commun. 2010 Sep 10;400(1):164-8. doi: 10.1016/j.bbrc.2010.08.037. Epub 2010 Aug 13.

PMID:
20709024
30.

Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved.

Rhodes JM, Bentley FK, Print CG, Dorsett D, Misulovin Z, Dickinson EJ, Crosier KE, Crosier PS, Horsfield JA.

Dev Biol. 2010 Aug 15;344(2):637-49. doi: 10.1016/j.ydbio.2010.05.493. Epub 2010 May 27.

31.

Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies.

Flores MV, Hall CJ, Crosier KE, Crosier PS.

Dev Dyn. 2010 Jul;239(7):2128-35. doi: 10.1002/dvdy.22328.

32.

Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells.

Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV.

Blood. 2010 Aug 12;116(6):909-14. doi: 10.1182/blood-2010-01-264382. Epub 2010 May 7.

PMID:
20453160
33.

Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation.

Oehlers SH, Flores MV, Hall CJ, O'Toole R, Swift S, Crosier KE, Crosier PS.

Dev Comp Immunol. 2010 Mar;34(3):352-9. doi: 10.1016/j.dci.2009.11.007. Epub 2009 Dec 1.

PMID:
19941893
34.

Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors.

Lam EY, Chau JY, Kalev-Zylinska ML, Fountaine TM, Mead RS, Hall CJ, Crosier PS, Crosier KE, Flores MV.

Blood. 2009 Feb 5;113(6):1241-9. doi: 10.1182/blood-2008-04-149898. Epub 2008 Oct 16.

PMID:
18927441
35.

Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2.

Flores MV, Hall CJ, Davidson AJ, Singh PP, Mahagaonkar AA, Zon LI, Crosier KE, Crosier PS.

Gastroenterology. 2008 Nov;135(5):1665-75. doi: 10.1053/j.gastro.2008.07.024. Epub 2008 Jul 31.

PMID:
18804112
36.

Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish.

Flores MV, Lam EY, Crosier KE, Crosier PS.

Nat Cell Biol. 2008 Mar;10(3):346-52. doi: 10.1038/ncb1697. Epub 2008 Feb 3.

PMID:
18246063
37.

Cohesin-dependent regulation of Runx genes.

Horsfield JA, Anagnostou SH, Hu JK, Cho KH, Geisler R, Lieschke G, Crosier KE, Crosier PS.

Development. 2007 Jul;134(14):2639-49. Epub 2007 Jun 13.

38.

Runx3 is required for hematopoietic development in zebrafish.

Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Chau JY, Cattin PM, Vitas MR, Crosier PS, Crosier KE.

Dev Dyn. 2003 Nov;228(3):323-36.

39.

Radar is required for the establishment of vascular integrity in the zebrafish.

Hall CJ, Flores MV, Davidson AJ, Crosier KE, Crosier PS.

Dev Biol. 2002 Nov 1;251(1):105-17.

40.

Pathways in blood and vessel development revealed through zebrafish genetics.

Crosier PS, Kalev-Zylinska ML, Hall CJ, Flores MV, Horsfield JA, Crosier KE.

Int J Dev Biol. 2002;46(4):493-502. Review.

41.

Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis.

Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, Crosier KE.

Development. 2002 Apr;129(8):2015-30.

42.

In situ hybridization screen in zebrafish for the selection of genes encoding secreted proteins.

Crosier PS, Bardsley A, Horsfield JA, Krassowska AK, Lavallie ER, Collins-Racie LA, Postlethwait JH, Yan YL, McCoy JM, Crosier KE.

Dev Dyn. 2001 Dec;222(4):637-44.

43.

The smad proteins and TGFbeta signalling: uncovering a pathway critical in cancer.

Rooke HM, Crosier KE.

Pathology. 2001 Feb;33(1):73-84. Review.

PMID:
11280614
44.
45.

Isolation of zebrafish gdf7 and comparative genetic mapping of genes belonging to the growth/differentiation factor 5, 6, 7 subgroup of the TGF-beta superfamily.

Davidson AJ, Postlethwait JH, Yan YL, Beier DR, van Doren C, Foernzler D, Celeste AJ, Crosier KE, Crosier PS.

Genome Res. 1999 Feb;9(2):121-9.

46.
47.

New insights into the control of cell growth; the role of the AxI family.

Crosier KE, Crosier PS.

Pathology. 1997 May;29(2):131-5. Review.

PMID:
9213330
49.

Expression of murine interleukin 11 and its receptor alpha-chain in adult and embryonic tissues.

Davidson AJ, Freeman SA, Crosier KE, Wood CR, Crosier PS.

Stem Cells. 1997;15(2):119-24.

50.

The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

Crosier PS, Freeman SA, Orlic D, Bodine DM, Crosier KE.

Exp Hematol. 1996 Feb;24(2):318-23.

PMID:
8641360

Supplemental Content

Loading ...
Support Center