Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response.

Butler VJ, Gao F, Corrales CI, Cortopassi WA, Caballero B, Vohra M, Ashrafi K, Cuervo AM, Jacobson MP, Coppola G, Kao AW.

PLoS Genet. 2019 Aug 9;15(8):e1008295. doi: 10.1371/journal.pgen.1008295. eCollection 2019 Aug.

2.

ATP-Competitive Inhibitors Midostaurin and Avapritinib Have Distinct Resistance Profiles in Exon 17-Mutant KIT.

Apsel Winger B, Cortopassi WA, Garrido Ruiz D, Ding L, Jang K, Leyte-Vidal A, Zhang N, Esteve-Puig R, Jacobson MP, Shah NP.

Cancer Res. 2019 Aug 15;79(16):4283-4292. doi: 10.1158/0008-5472.CAN-18-3139. Epub 2019 Jul 3.

PMID:
31270078
3.

Multi-Granulin Domain Peptides Bind to Pro-Cathepsin D and Stimulate Its Enzymatic Activity More Effectively Than Progranulin in Vitro.

Butler VJ, Cortopassi WA, Gururaj S, Wang AL, Pierce OM, Jacobson MP, Kao AW.

Biochemistry. 2019 Jun 11;58(23):2670-2674. doi: 10.1021/acs.biochem.9b00275. Epub 2019 May 24.

PMID:
31099551
4.

Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH.

Charafeddine RA, Cortopassi WA, Lak P, Tan R, McKenney RJ, Jacobson MP, Barber DL, Wittmann T.

J Biol Chem. 2019 May 31;294(22):8779-8790. doi: 10.1074/jbc.RA118.007004. Epub 2019 Apr 16.

PMID:
30992364
5.

Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents.

Qi X, Zhang N, Zhao L, Hu L, Cortopassi WA, Jacobson MP, Li X, Zhong R.

Biochem Biophys Res Commun. 2019 Apr 30;512(2):208-212. doi: 10.1016/j.bbrc.2019.03.016. Epub 2019 Mar 14.

PMID:
30878184
6.

Progranulin Stimulates the In Vitro Maturation of Pro-Cathepsin D at Acidic pH.

Butler VJ, Cortopassi WA, Argouarch AR, Ivry SL, Craik CS, Jacobson MP, Kao AW.

J Mol Biol. 2019 Mar 1;431(5):1038-1047. doi: 10.1016/j.jmb.2019.01.027. Epub 2019 Jan 25.

PMID:
30690031
7.

Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity.

Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS, Almeida MMFS, Barros DCS, Guedes JS, Meneghetti MR, Krettli AU.

Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):459-464. doi: 10.1016/j.ijpddr.2018.10.002. Epub 2018 Oct 13.

8.

Structure-based Discovery of Novel CK2α-Binding Cyclic Peptides with Anti-cancer Activity.

Tang S, Zhang N, Zhou Y, Cortopassi WA, Jacobson MP, Zhao LJ, Zhong RG.

Mol Inform. 2019 Mar;38(3):e1800089. doi: 10.1002/minf.201800089. Epub 2018 Oct 11.

PMID:
30307134
9.

A systems biology approach to antimalarial drug discovery.

Cortopassi WA, Celmar Costa Franca T, Krettli AU.

Expert Opin Drug Discov. 2018 Jul;13(7):617-626. doi: 10.1080/17460441.2018.1471056. Epub 2018 May 8. Review.

PMID:
29737894
10.

Cation-π interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine.

Kumar K, Woo SM, Siu T, Cortopassi WA, Duarte F, Paton RS.

Chem Sci. 2018 Jan 31;9(10):2655-2665. doi: 10.1039/c7sc04905f. eCollection 2018 Mar 14.

11.

Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

Pliotas C, Grayer SC, Ekkerman S, Chan AKN, Healy J, Marius P, Bartlett W, Khan A, Cortopassi WA, Chandler SA, Rasmussen T, Benesch JLP, Paton RS, Claridge TDW, Miller S, Booth IR, Naismith JH, Conway SJ.

Biochemistry. 2017 Aug 15;56(32):4219-4234. doi: 10.1021/acs.biochem.7b00300. Epub 2017 Aug 4.

12.

Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in β-adrenoceptor signaling.

Lin WK, Bolton EL, Cortopassi WA, Wang Y, O'Brien F, Maciejewska M, Jacobson MP, Garnham C, Ruas M, Parrington J, Lei M, Sitsapesan R, Galione A, Terrar DA.

J Biol Chem. 2017 Aug 11;292(32):13243-13257. doi: 10.1074/jbc.M117.789347. Epub 2017 May 24.

13.
14.

Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment.

Cortopassi WA, Kumar K, Duarte F, Pimentel AS, Paton RS.

J Mol Graph Model. 2016 Jun;67:69-84. doi: 10.1016/j.jmgm.2016.04.011. Epub 2016 May 4.

PMID:
27258188
15.

Correction to Small Molecule Inhibitors of Bromodomain-Acetyl-lysine Interactions.

Brand M, Measures AR, Wilson BG, Cortopassi WA, Alexander R, Höss M, Hewings DS, Rooney TP, Paton RS, Conway SJ.

ACS Chem Biol. 2016 Apr 15;11(4):1148. doi: 10.1021/acschembio.5b01065. Epub 2016 Jan 12. No abstract available.

PMID:
26756254
16.

Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.

Cortopassi WA, Simion R, Honsby CE, França TC, Paton RS.

Chemistry. 2015 Dec 21;21(52):18869. doi: 10.1002/chem.201504536. Epub 2015 Dec 10.

PMID:
26663343
17.

Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.

Cortopassi WA, Simion R, Honsby CE, França TC, Paton RS.

Chemistry. 2015 Dec 21;21(52):18983-92. doi: 10.1002/chem.201502983. Epub 2015 Nov 18.

PMID:
26577067
18.

Small molecule inhibitors of bromodomain-acetyl-lysine interactions.

Brand M, Measures AR, Wilson BG, Cortopassi WA, Alexander R, Höss M, Hewings DS, Rooney TP, Paton RS, Conway SJ.

ACS Chem Biol. 2015 Jan 16;10(1):22-39. doi: 10.1021/cb500996u. Review. Erratum in: ACS Chem Biol. 2016 Apr 15;11(4):1148. Measures, Angelina M [corrected to Measures, Angelina R].

PMID:
25549280
19.

A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction.

Rooney TP, Filippakopoulos P, Fedorov O, Picaud S, Cortopassi WA, Hay DA, Martin S, Tumber A, Rogers CM, Philpott M, Wang M, Thompson AL, Heightman TD, Pryde DC, Cook A, Paton RS, Müller S, Knapp S, Brennan PE, Conway SJ.

Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6126-30. doi: 10.1002/anie.201402750. Epub 2014 May 12.

20.

Theoretical and experimental studies of new modified isoflavonoids as potential inhibitors of topoisomerase I from Plasmodium falciparum.

Cortopassi WA, Penna-Coutinho J, Aguiar AC, Pimentel AS, Buarque CD, Costa PR, Alves BR, França TC, Krettli AU.

PLoS One. 2014 Mar 20;9(3):e91191. doi: 10.1371/journal.pone.0091191. eCollection 2014.

21.

Applications of docking and molecular dynamic studies on the search for new drugs against the biological warfare agents Bacillus anthracis and Yersinia pestis.

França TC, Guimarães AP, Cortopassi WA, Oliveira AA, Ramalho TC.

Curr Comput Aided Drug Des. 2013 Dec;9(4):507-17. Review.

PMID:
24341424
22.

Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites.

Aguiar AC, Santos Rde M, Figueiredo FJ, Cortopassi WA, Pimentel AS, França TC, Meneghetti MR, Krettli AU.

PLoS One. 2012;7(5):e37259. doi: 10.1371/journal.pone.0037259. Epub 2012 May 23.

23.

Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TC, Krettli AU.

PLoS One. 2011;6(7):e21237. doi: 10.1371/journal.pone.0021237. Epub 2011 Jul 14.

24.

Docking studies on the binding of quinoline derivatives and hematin to Plasmodium falciparum lactate dehydrogenase.

Cortopassi WA, Oliveira AA, Guimarães AP, Rennó MN, Krettli AU, França TC.

J Biomol Struct Dyn. 2011 Aug;29(1):207-18.

PMID:
21696234

Supplemental Content

Loading ...
Support Center