Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

The novel interaction between Neisseria gonorrhoeae TdfJ and human S100A7 allows gonococci to subvert host zinc restriction.

Maurakis S, Keller K, Maxwell CN, Pereira K, Chazin WJ, Criss AK, Cornelissen CN.

PLoS Pathog. 2019 Aug 1;15(8):e1007937. doi: 10.1371/journal.ppat.1007937. eCollection 2019 Aug.

2.

Generation of Metal-Depleted Conditions for In Vitro Growth of Neisseria gonorrhoeae.

Cornelissen CN.

Methods Mol Biol. 2019;1997:217-231. doi: 10.1007/978-1-4939-9496-0_14.

PMID:
31119627
3.

Subversion of nutritional immunity by the pathogenic Neisseriae.

Cornelissen CN.

Pathog Dis. 2018 Feb 1;76(1). doi: 10.1093/femspd/ftx112. Review.

4.

Neisseria gonorrhoeae Evades Calprotectin-Mediated Nutritional Immunity and Survives Neutrophil Extracellular Traps by Production of TdfH.

Jean S, Juneau RA, Criss AK, Cornelissen CN.

Infect Immun. 2016 Sep 19;84(10):2982-94. doi: 10.1128/IAI.00319-16. Print 2016 Oct.

5.

The genes that encode the gonococcal transferrin binding proteins, TbpB and TbpA, are differentially regulated by MisR under iron-replete and iron-depleted conditions.

Kandler JL, Acevedo RV, Dickinson MK, Cash DR, Shafer WM, Cornelissen CN.

Mol Microbiol. 2016 Oct;102(1):137-51. doi: 10.1111/mmi.13450. Epub 2016 Jul 18.

6.

Beyond the Crystal Structure: Insight into the Function and Vaccine Potential of TbpA Expressed by Neisseria gonorrhoeae.

Cash DR, Noinaj N, Buchanan SK, Cornelissen CN.

Infect Immun. 2015 Nov;83(11):4438-49. doi: 10.1128/IAI.00762-15. Epub 2015 Sep 8.

7.

GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease.

Booth L, Roberts JL, Cash DR, Tavallai S, Jean S, Fidanza A, Cruz-Luna T, Siembiba P, Cycon KA, Cornelissen CN, Dent P.

J Cell Physiol. 2015 Jul;230(7):1661-76. doi: 10.1002/jcp.24919.

8.

Identification of regulatory elements that control expression of the tbpBA operon in Neisseria gonorrhoeae.

VĂ©lez Acevedo RN, Ronpirin C, Kandler JL, Shafer WM, Cornelissen CN.

J Bacteriol. 2014 Aug;196(15):2762-74. doi: 10.1128/JB.01693-14. Epub 2014 May 16.

9.

Conserved regions of gonococcal TbpB are critical for surface exposure and transferrin iron utilization.

Ostberg KL, DeRocco AJ, Mistry SD, Dickinson MK, Cornelissen CN.

Infect Immun. 2013 Sep;81(9):3442-50. doi: 10.1128/IAI.00280-13. Epub 2013 Jul 8.

10.

Structural insight into the lactoferrin receptors from pathogenic Neisseria.

Noinaj N, Cornelissen CN, Buchanan SK.

J Struct Biol. 2013 Oct;184(1):83-92. doi: 10.1016/j.jsb.2013.02.009. Epub 2013 Feb 24.

11.

The transferrin-iron import system from pathogenic Neisseria species.

Noinaj N, Buchanan SK, Cornelissen CN.

Mol Microbiol. 2012 Oct;86(2):246-57. doi: 10.1111/mmi.12002. Epub 2012 Sep 7. Review.

12.

Evidence of Fe3+ interaction with the plug domain of the outer membrane transferrin receptor protein of Neisseria gonorrhoeae: implications for Fe transport.

Banerjee S, Siburt CJ, Mistry S, Noto JM, DeArmond P, Fitzgerald MC, Lambert LA, Cornelissen CN, Crumbliss AL.

Metallomics. 2012 Apr;4(4):361-72. doi: 10.1039/c2mt20037f. Epub 2012 Mar 8.

13.

Molecular pathogenesis of Neisseria gonorrhoeae.

Cornelissen CN.

Front Microbiol. 2011 Nov 15;2:224. doi: 10.3389/fmicb.2011.00224. eCollection 2011. No abstract available.

14.

The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae.

Hollander A, Mercante AD, Shafer WM, Cornelissen CN.

Infect Immun. 2011 Dec;79(12):4764-76. doi: 10.1128/IAI.05806-11. Epub 2011 Sep 26.

15.

TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae.

Cornelissen CN, Hollander A.

Front Microbiol. 2011 May 27;2:117. doi: 10.3389/fmicb.2011.00117. eCollection 2011.

16.

The fbpABC operon is required for Ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19.

Strange HR, Zola TA, Cornelissen CN.

Infect Immun. 2011 Jan;79(1):267-78. doi: 10.1128/IAI.00807-10. Epub 2010 Nov 1.

17.

Type IV secretion machinery promotes ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells.

Zola TA, Strange HR, Dominguez NM, Dillard JP, Cornelissen CN.

Infect Immun. 2010 Jun;78(6):2429-37. doi: 10.1128/IAI.00228-10. Epub 2010 Mar 22.

18.

Hijacking transferrin bound iron: protein-receptor interactions involved in iron transport in N. gonorrhoeae.

Siburt CJ, Roulhac PL, Weaver KD, Noto JM, Mietzner TA, Cornelissen CN, Fitzgerald MC, Crumbliss AL.

Metallomics. 2009;1(3):249-55. doi: 10.1039/b902860a.

19.

Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system.

DeRocco AJ, Yost-Daljev MK, Kenney CD, Cornelissen CN.

Biometals. 2009 Jun;22(3):439-51. doi: 10.1007/s10534-008-9179-y. Epub 2008 Dec 2.

20.

Identification and characterization of gonococcal iron transport systems as potential vaccine antigens.

Cornelissen CN.

Future Microbiol. 2008 Jun;3(3):287-98. doi: 10.2217/17460913.3.3.287. Review.

21.

Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae.

Noto JM, Cornelissen CN.

Infect Immun. 2008 May;76(5):1960-9. doi: 10.1128/IAI.00020-08. Epub 2008 Mar 17.

22.

Gonococcal transferrin binding protein chimeras induce bactericidal and growth inhibitory antibodies in mice.

Price GA, Masri HP, Hollander AM, Russell MW, Cornelissen CN.

Vaccine. 2007 Oct 10;25(41):7247-60. Epub 2007 Aug 6.

23.

Identification of transferrin-binding domains in TbpB expressed by Neisseria gonorrhoeae.

DeRocco AJ, Cornelissen CN.

Infect Immun. 2007 Jul;75(7):3220-32. Epub 2007 Apr 16.

24.
26.
27.

Immunogenicity of gonococcal transferrin binding proteins during natural infections.

Price GA, Hobbs MM, Cornelissen CN.

Infect Immun. 2004 Jan;72(1):277-83.

28.
29.

Transferrin-iron uptake by Gram-negative bacteria.

Cornelissen CN.

Front Biosci. 2003 May 1;8:d836-47. Review.

PMID:
12700102
30.
31.
32.
34.
35.

Antigenic and sequence diversity in gonococcal transferrin-binding protein A.

Cornelissen CN, Anderson JE, Boulton IC, Sparling PF.

Infect Immun. 2000 Aug;68(8):4725-35.

36.

Identification and functional characterization of the Neisseria gonorrhoeae lbpB gene product.

Biswas GD, Anderson JE, Chen CJ, Cornelissen CN, Sparling PF.

Infect Immun. 1999 Jan;67(1):455-9.

37.

The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers.

Cornelissen CN, Kelley M, Hobbs MM, Anderson JE, Cannon JG, Cohen MS, Sparling PF.

Mol Microbiol. 1998 Feb;27(3):611-6.

38.

Energy-dependent changes in the gonococcal transferrin receptor.

Cornelissen CN, Anderson JE, Sparling PF.

Mol Microbiol. 1997 Oct;26(1):25-35.

39.
41.

Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens.

Cornelissen CN, Sparling PF.

Mol Microbiol. 1994 Dec;14(5):843-50. Review.

PMID:
7715446
42.

Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization.

Anderson JE, Sparling PF, Cornelissen CN.

J Bacteriol. 1994 Jun;176(11):3162-70.

43.

Identification of receptor-mediated transferrin-iron uptake mechanism in Neisseria gonorrhoeae.

Cornelissen CN, Sparling PF.

Methods Enzymol. 1994;235:356-63. Review. No abstract available.

PMID:
8057908
44.
45.

Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors.

Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF.

J Bacteriol. 1992 Sep;174(18):5788-97.

46.

Gonococci are survivors.

Sparling PF, Tsai J, Cornelissen CN.

Scand J Infect Dis Suppl. 1990;69:125-36. Review.

PMID:
2124726

Supplemental Content

Loading ...
Support Center