Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2-associated schwannomas reveals differences in efficacy and drug resistance development.

Fuse MA, Dinh CT, Vitte J, Kirkpatrick J, Mindos T, Plati SK, Young JI, Huang J, Carlstedt A, Franco MC, Brnjos K, Nagamoto J, Petrilli AM, Copik AJ, Soulakova JN, Bracho O, Yan D, Mittal R, Shen R, Telischi FF, Morrison H, Giovannini M, Liu XZ, Chang LS, Fernandez-Valle C.

Neuro Oncol. 2019 Mar 18;21(4):486-497. doi: 10.1093/neuonc/noz002.

PMID:
30615146
2.

PD-L1 blockade enhances anti-tumor efficacy of NK cells.

Oyer JL, Gitto SB, Altomare DA, Copik AJ.

Oncoimmunology. 2018 Aug 27;7(11):e1509819. doi: 10.1080/2162402X.2018.1509819. eCollection 2018.

3.

Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer.

Gitto SB, Pandey V, Oyer JL, Copik AJ, Hogan FC, Phanstiel O 4th, Altomare DA.

Mol Pharm. 2018 Feb 5;15(2):369-376. doi: 10.1021/acs.molpharmaceut.7b00718. Epub 2018 Jan 4.

PMID:
29299930
4.

Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells.

Fuse MA, Plati SK, Burns SS, Dinh CT, Bracho O, Yan D, Mittal R, Shen R, Soulakova JN, Copik AJ, Liu XZ, Telischi FF, Chang LS, Franco MC, Fernandez-Valle C.

Mol Cancer Ther. 2017 Nov;16(11):2387-2398. doi: 10.1158/1535-7163.MCT-17-0417. Epub 2017 Aug 3.

5.

Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, Khaled AR.

Cytokine. 2017 Sep;97:123-132. doi: 10.1016/j.cyto.2017.05.024. Epub 2017 Jun 22. Review.

6.

Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells.

Petrilli AM, Garcia J, Bott M, Klingeman Plati S, Dinh CT, Bracho OR, Yan D, Zou B, Mittal R, Telischi FF, Liu XZ, Chang LS, Welling DB, Copik AJ, Fernández-Valle C.

Oncotarget. 2017 May 9;8(19):31666-31681. doi: 10.18632/oncotarget.15912.

7.

Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: Clinical implications for cancer treatment.

Oyer JL, Pandey V, Igarashi RY, Somanchi SS, Zakari A, Solh M, Lee DA, Altomare DA, Copik AJ.

Cytotherapy. 2016 May;18(5):653-63. doi: 10.1016/j.jcyt.2016.02.006.

PMID:
27059202
8.

Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells.

Pandey V, Oyer JL, Igarashi RY, Gitto SB, Copik AJ, Altomare DA.

Oncotarget. 2016 Feb 9;7(6):7318-28. doi: 10.18632/oncotarget.6939.

9.

Isoproterenol acts as a biased agonist of the alpha-1A-adrenoceptor that selectively activates the MAPK/ERK pathway.

Copik AJ, Baldys A, Nguyen K, Sahdeo S, Ho H, Kosaka A, Dietrich PJ, Fitch B, Raymond JR, Ford AP, Button D, Milla ME.

PLoS One. 2015 Jan 21;10(1):e0115701. doi: 10.1371/journal.pone.0115701. eCollection 2015.

10.

Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach.

Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, Zakari A, Khaled YA, Altomare DA, Copik AJ.

Biol Blood Marrow Transplant. 2015 Apr;21(4):632-9. doi: 10.1016/j.bbmt.2014.12.037. Epub 2015 Jan 6.

11.

Facilitatory interplay in alpha 1a and beta 2 adrenoceptor function reveals a non-Gq signaling mode: implications for diversification of intracellular signal transduction.

Copik AJ, Ma C, Kosaka A, Sahdeo S, Trane A, Ho H, Dietrich PS, Yu H, Ford AP, Button D, Milla ME.

Mol Pharmacol. 2009 Mar;75(3):713-28. doi: 10.1124/mol.108.050765. Epub 2008 Dec 24.

PMID:
19109357
12.

Activation function 1 of glucocorticoid receptor binds TATA-binding protein in vitro and in vivo.

Copik AJ, Webb MS, Miller AL, Wang Y, Kumar R, Thompson EB.

Mol Endocrinol. 2006 Jun;20(6):1218-30. Epub 2006 Feb 9.

PMID:
16469772
13.

Molecular discrimination of type-I over type-II methionyl aminopeptidases.

Swierczek K, Copik AJ, Swierczek SI, Holz RC.

Biochemistry. 2005 Sep 13;44(36):12049-56.

PMID:
16142902
15.

Both nucleophile and substrate bind to the catalytic Fe(II)-center in the type-II methionyl aminopeptidase from Pyrococcus furiosus.

Copik AJ, Waterson S, Swierczek SI, Bennett B, Holz RC.

Inorg Chem. 2005 Mar 7;44(5):1160-2.

PMID:
15732944
16.

EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus.

Copik AJ, Nocek BP, Swierczek SI, Ruebush S, Jang SB, Meng L, D'souza VM, Peters JW, Bennett B, Holz RC.

Biochemistry. 2005 Jan 11;44(1):121-9.

PMID:
15628852
17.

Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli.

Copik AJ, Swierczek SI, Lowther WT, D'souza VM, Matthews BW, Holz RC.

Biochemistry. 2003 May 27;42(20):6283-92.

PMID:
12755633
18.

Kinetic and structural characterization of manganese(II)-loaded methionyl aminopeptidases.

D'souza VM, Swierczek SI, Cosper NJ, Meng L, Ruebush S, Copik AJ, Scott RA, Holz RC.

Biochemistry. 2002 Oct 29;41(43):13096-105.

PMID:
12390038
19.

Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.

Meng L, Ruebush S, D'souza VM, Copik AJ, Tsunasawa S, Holz RC.

Biochemistry. 2002 Jun 11;41(23):7199-208.

PMID:
12044150
20.

Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.

D'souza VM, Bennett B, Copik AJ, Holz RC.

Biochemistry. 2000 Apr 4;39(13):3817-26.

PMID:
10736182

Supplemental Content

Loading ...
Support Center