Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Unwinding of the Substrate Transmembrane Helix in Intramembrane Proteolysis.

Brown MC, Abdine A, Chavez J, Schaffner A, Torres-Arancivia C, Lada B, JiJi RD, Osman R, Cooley JW, Ubarretxena-Belandia I.

Biophys J. 2018 Apr 10;114(7):1579-1589. doi: 10.1016/j.bpj.2018.01.043.

2.

A New Method to Determine the Transmembrane Conformation of Substrates in Intramembrane Proteolysis by Deep-UV Resonance Raman Spectroscopy.

Cooley JW, Abdine A, Brown M, Chavez J, Lada B, JiJi RD, Ubarretxena-Belandia I.

Methods Enzymol. 2017;584:207-228. doi: 10.1016/bs.mie.2016.10.030. Epub 2016 Dec 9.

PMID:
28065264
3.

Site-directed mutagenesis of the highly perturbed copper site of auracyanin D.

King JD, Harrington L, Lada BM, He G, Cooley JW, Blankenship RE.

Arch Biochem Biophys. 2014 Dec 15;564:237-43. doi: 10.1016/j.abb.2014.10.003. Epub 2014 Oct 12.

PMID:
25317962
4.

Effects of fluidity on the ensemble structure of a membrane embedded α-helical peptide.

Eagleburger MK, Cooley JW, JiJi RD.

Biopolymers. 2014 Aug;101(8):895-902. doi: 10.1002/bip.22472.

PMID:
25098179
5.

Role of bilayer characteristics on the structural fate of aβ(1-40) and aβ(25-40).

Xiong J, Roach CA, Oshokoya OO, Schroell RP, Yakubu RA, Eagleburger MK, Cooley JW, Jiji RD.

Biochemistry. 2014 May 13;53(18):3004-11. doi: 10.1021/bi4016296. Epub 2014 Apr 23.

PMID:
24702518
6.

Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures.

Brown MC, Yakubu RA, Taylor J, Halsey CM, Xiong J, Jiji RD, Cooley JW.

Biophys Chem. 2014 Mar-Apr;187-188:1-6. doi: 10.1016/j.bpc.2013.12.004. Epub 2013 Dec 28.

PMID:
24440554
7.

Metalloproteins diversified: the auracyanins are a family of cupredoxins that stretch the spectral and redox limits of blue copper proteins.

King JD, McIntosh CL, Halsey CM, Lada BM, Niedzwiedzki DM, Cooley JW, Blankenship RE.

Biochemistry. 2013 Nov 19;52(46):8267-75. doi: 10.1021/bi401163g. Epub 2013 Nov 6.

PMID:
24147561
8.

Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle.

Cooley JW.

Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1340-5. doi: 10.1016/j.bbabio.2013.07.007. Epub 2013 Jul 20. Review.

9.
10.

Influence of the lipid environment on valinomycin structure and cation complex formation.

Halsey CM, Benham DA, JiJi RD, Cooley JW.

Spectrochim Acta A Mol Biomol Spectrosc. 2012 Oct;96:200-6. doi: 10.1016/j.saa.2012.05.022. Epub 2012 May 18.

PMID:
22683555
11.

Simultaneous observation of peptide backbone lipid solvation and α-helical structure by deep-UV resonance Raman spectroscopy.

Halsey CM, Xiong J, Oshokoya OO, Johnson JA, Shinde S, Beatty JT, Ghirlanda G, JiJi RD, Cooley JW.

Chembiochem. 2011 Sep 19;12(14):2125-8. doi: 10.1002/cbic.201100433. Epub 2011 Jul 27. No abstract available.

PMID:
21796753
12.

Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc₁complex reveals a potential marker for the transmembrane peptide backbone.

Halsey CM, Oshokoya OO, Jiji RD, Cooley JW.

Biochemistry. 2011 Aug 2;50(30):6531-8. doi: 10.1021/bi200596w. Epub 2011 Jul 11.

PMID:
21718040
13.

Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1.

Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F.

J Biol Chem. 2011 May 20;286(20):18139-48. doi: 10.1074/jbc.M110.214460. Epub 2011 Mar 23.

14.

A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc1.

Cooley JW.

Biochim Biophys Acta. 2010 Dec;1797(12):1842-8. doi: 10.1016/j.bbabio.2010.05.013. Epub 2010 May 31.

15.

Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1).

Cooley JW, Lee DW, Daldal F.

Biochemistry. 2009 Mar 10;48(9):1888-99. doi: 10.1021/bi802216h.

16.

Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components.

Lee DW, Oztürk Y, Osyczka A, Cooley JW, Daldal F.

J Biol Chem. 2008 May 16;283(20):13973-82. doi: 10.1074/jbc.M800091200. Epub 2008 Mar 14.

17.

A functional hybrid between the cytochrome bc1 complex and its physiological membrane-anchored electron acceptor cytochrome cy in Rhodobacter capsulatus.

Lee DW, Ozturk Y, Mamedova A, Osyczka A, Cooley JW, Daldal F.

Biochim Biophys Acta. 2006 May-Jun;1757(5-6):346-52. Epub 2006 May 9.

18.

The Cytochrome bc (1) Complex and its Homologue the b (6) f Complex: Similarities and Differences.

Darrouzet E, Cooley JW, Daldal F.

Photosynth Res. 2004;79(1):25-44.

PMID:
16228398
20.

Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system.

Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, Daldal F, Vaidya AB.

J Biol Chem. 2005 Jul 22;280(29):27458-65. Epub 2005 May 24.

21.
25.

Propagated subthreshold oscillatory response and classical electrotonic response of squid giant axon.

Mauro A, Freeman AR, Cooley JW, Cass A.

Biophysik. 1972;8(2):118-32. No abstract available.

PMID:
4336922
26.
27.

Supplemental Content

Loading ...
Support Center