Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Streamlined Genetic Manipulation of Diverse Bacteroides and Parabacteroides Isolates from the Human Gut Microbiota.

García-Bayona L, Comstock LE.

MBio. 2019 Aug 13;10(4). pii: e01762-19. doi: 10.1128/mBio.01762-19.

2.

A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota.

Coyne MJ, Béchon N, Matano LM, McEneany VL, Chatzidaki-Livanis M, Comstock LE.

Nat Commun. 2019 Aug 1;10(1):3460. doi: 10.1038/s41467-019-11494-1.

3.

Type VI Secretion Systems and the Gut Microbiota.

Coyne MJ, Comstock LE.

Microbiol Spectr. 2019 Mar;7(2). doi: 10.1128/microbiolspec.PSIB-0009-2018. Review.

4.

Identification of a Fifth Antibacterial Toxin Produced by a Single Bacteroides fragilis Strain.

Shumaker AM, Laclare McEneany V, Coyne MJ, Silver PA, Comstock LE.

J Bacteriol. 2019 Mar 26;201(8). pii: e00577-18. doi: 10.1128/JB.00577-18. Print 2019 Apr 15.

5.

Bacterial antagonism in host-associated microbial communities.

García-Bayona L, Comstock LE.

Science. 2018 Sep 21;361(6408). pii: eaat2456. doi: 10.1126/science.aat2456. Review.

PMID:
30237322
6.

Acquisition of MACPF domain-encoding genes is the main contributor to LPS glycan diversity in gut Bacteroides species.

McEneany VL, Coyne MJ, Chatzidaki-Livanis M, Comstock LE.

ISME J. 2018 Dec;12(12):2919-2928. doi: 10.1038/s41396-018-0244-4. Epub 2018 Jul 31.

PMID:
30065309
7.

Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy.

Lee-Sarwar K, Kelly RS, Lasky-Su J, Moody DB, Mola AR, Cheng TY, Comstock LE, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Laranjo N, Gold DR, Bunyavanich S, Savage JH, Weiss ST, Brennan PJ, Litonjua AA.

J Allergy Clin Immunol. 2018 Jul;142(1):335-338.e9. doi: 10.1016/j.jaci.2018.04.016. Epub 2018 May 2. No abstract available.

8.

Gut Symbiont Bacteroides fragilis Secretes a Eukaryotic-Like Ubiquitin Protein That Mediates Intraspecies Antagonism.

Chatzidaki-Livanis M, Coyne MJ, Roelofs KG, Gentyala RR, Caldwell JM, Comstock LE.

MBio. 2017 Nov 28;8(6). pii: e01902-17. doi: 10.1128/mBio.01902-17.

9.

Bacteroidales Secreted Antimicrobial Proteins Target Surface Molecules Necessary for Gut Colonization and Mediate Competition In Vivo.

Roelofs KG, Coyne MJ, Gentyala RR, Chatzidaki-Livanis M, Comstock LE.

MBio. 2016 Aug 23;7(4). pii: e01055-16. doi: 10.1128/mBio.01055-16.

10.

Small RNAs Repress Expression of Polysaccharide Utilization Loci of Gut Bacteroides Species.

Comstock LE.

J Bacteriol. 2016 Aug 25;198(18):2396-8. doi: 10.1128/JB.00514-16. Print 2016 Sep 15.

11.

The evolution of cooperation within the gut microbiota.

Rakoff-Nahoum S, Foster KR, Comstock LE.

Nature. 2016 May 12;533(7602):255-9. doi: 10.1038/nature17626. Epub 2016 Apr 25.

12.

A New Pillar in Pilus Assembly.

Coyne MJ, Comstock LE.

Cell. 2016 Apr 21;165(3):520-1. doi: 10.1016/j.cell.2016.04.024.

13.

Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species.

Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE.

Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3627-32. doi: 10.1073/pnas.1522510113. Epub 2016 Mar 7.

14.
15.

The Host Shapes the Gut Microbiota via Fecal MicroRNA.

Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL.

Cell Host Microbe. 2016 Jan 13;19(1):32-43. doi: 10.1016/j.chom.2015.12.005.

16.

Friend turned foe: a role for bacterial sulfatases in colitis.

Chatzidaki-Livanis M, Comstock LE.

Cell Host Microbe. 2015 May 13;17(5):540-1. doi: 10.1016/j.chom.2015.04.012.

17.

An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins.

Chatzidaki-Livanis M, Coyne MJ, Comstock LE.

Mol Microbiol. 2014 Dec;94(6):1361-74. doi: 10.1111/mmi.12839. Epub 2014 Nov 14.

18.

Immunology: Starve a fever, feed the microbiota.

Rakoff-Nahoum S, Comstock LE.

Nature. 2014 Oct 30;514(7524):576-7. doi: 10.1038/nature13756. Epub 2014 Oct 1. No abstract available.

PMID:
25274298
19.

Evidence of extensive DNA transfer between bacteroidales species within the human gut.

Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE.

MBio. 2014 Jun 17;5(3):e01305-14. doi: 10.1128/mBio.01305-14.

20.

An ecological network of polysaccharide utilization among human intestinal symbionts.

Rakoff-Nahoum S, Coyne MJ, Comstock LE.

Curr Biol. 2014 Jan 6;24(1):40-49. doi: 10.1016/j.cub.2013.10.077. Epub 2013 Dec 12.

21.

Production of α-galactosylceramide by a prominent member of the human gut microbiota.

Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA.

PLoS Biol. 2013 Jul;11(7):e1001610. doi: 10.1371/journal.pbio.1001610. Epub 2013 Jul 16.

22.

Characterization of adherent bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease.

Zitomersky NL, Atkinson BJ, Franklin SW, Mitchell PD, Snapper SB, Comstock LE, Bousvaros A.

PLoS One. 2013 Jun 11;8(6):e63686. doi: 10.1371/journal.pone.0063686. Print 2013.

23.

Phylum-wide general protein O-glycosylation system of the Bacteroidetes.

Coyne MJ, Fletcher CM, Chatzidaki-Livanis M, Posch G, Schaffer C, Comstock LE.

Mol Microbiol. 2013 May;88(4):772-83. doi: 10.1111/mmi.12220. Epub 2013 Apr 17.

24.

"Cross-glycosylation" of proteins in Bacteroidales species.

Posch G, Pabst M, Neumann L, Coyne MJ, Altmann F, Messner P, Comstock LE, Schäffer C.

Glycobiology. 2013 May;23(5):568-77. doi: 10.1093/glycob/cws172. Epub 2012 Dec 19.

25.

UDP-glucuronic acid decarboxylases of Bacteroides fragilis and their prevalence in bacteria.

Coyne MJ, Fletcher CM, Reinap B, Comstock LE.

J Bacteriol. 2011 Oct;193(19):5252-9. doi: 10.1128/JB.05337-11. Epub 2011 Jul 29.

26.

Longitudinal analysis of the prevalence, maintenance, and IgA response to species of the order Bacteroidales in the human gut.

Zitomersky NL, Coyne MJ, Comstock LE.

Infect Immun. 2011 May;79(5):2012-20. doi: 10.1128/IAI.01348-10. Epub 2011 Mar 14.

27.

Theoretical and experimental characterization of the scope of protein O-glycosylation in Bacteroides fragilis.

Fletcher CM, Coyne MJ, Comstock LE.

J Biol Chem. 2011 Feb 4;286(5):3219-26. doi: 10.1074/jbc.M110.194506. Epub 2010 Nov 29.

28.

Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection.

Troy EB, Carey VJ, Kasper DL, Comstock LE.

J Bacteriol. 2010 Nov;192(21):5832-6. doi: 10.1128/JB.00555-10. Epub 2010 Aug 20. Erratum in: J Bacteriol. 2012 Mar;194(6):1640.

29.

Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis.

Chatzidaki-Livanis M, Weinacht KG, Comstock LE.

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11976-80. doi: 10.1073/pnas.1005039107. Epub 2010 Jun 14.

30.

A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of Bacteroides fragilis.

Chatzidaki-Livanis M, Coyne MJ, Comstock LE.

J Bacteriol. 2009 Dec;191(23):7288-95. doi: 10.1128/JB.00500-09. Epub 2009 Oct 2.

31.

Importance of glycans to the host-bacteroides mutualism in the mammalian intestine.

Comstock LE.

Cell Host Microbe. 2009 Jun 18;5(6):522-6. doi: 10.1016/j.chom.2009.05.010. Review.

32.

A general O-glycosylation system important to the physiology of a major human intestinal symbiont.

Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE.

Cell. 2009 Apr 17;137(2):321-31. doi: 10.1016/j.cell.2009.02.041.

33.

Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis.

Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE.

Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13099-104. doi: 10.1073/pnas.0804220105. Epub 2008 Aug 22.

34.

Expression of phase variable surface molecules of Bacteroides species from healthy and clinical stool.

Belzer C, Comstock LE.

J Pediatr Gastroenterol Nutr. 2008 Apr;46 Suppl 1:E15-6. doi: 10.1097/01.mpg.0000313829.01466.f7. Review. No abstract available.

PMID:
18354319
35.

Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis.

Chatzidaki-Livanis M, Coyne MJ, Roche-Hakansson H, Comstock LE.

J Bacteriol. 2008 Feb;190(3):1020-6. Epub 2007 Nov 26.

36.

Niche-specific features of the intestinal bacteroidales.

Coyne MJ, Comstock LE.

J Bacteriol. 2008 Jan;190(2):736-42. Epub 2007 Nov 9.

37.

Microbiology: the inside story.

Comstock LE.

Nature. 2007 Aug 2;448(7153):542-4. No abstract available. Erratum in: Nature. 2007 Aug 9;448(7154):660.

PMID:
17671490
38.

A defined O-antigen polysaccharide mutant of Francisella tularensis live vaccine strain has attenuated virulence while retaining its protective capacity.

Sebastian S, Dillon ST, Lynch JG, Blalock LT, Balon E, Lee KT, Comstock LE, Conlan JW, Rubin EJ, Tzianabos AO, Kasper DL.

Infect Immun. 2007 May;75(5):2591-602. Epub 2007 Feb 12.

39.

Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem.

Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE.

Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2413-8. Epub 2007 Feb 6.

40.

Bacteroides fragilis synthesizes a DNA invertase affecting both a local and a distant region.

Roche-Hakansson H, Chatzidaki-Livanis M, Coyne MJ, Comstock LE.

J Bacteriol. 2007 Mar;189(5):2119-24. Epub 2006 Dec 22.

41.

Bacterial glycans: key mediators of diverse host immune responses.

Comstock LE, Kasper DL.

Cell. 2006 Sep 8;126(5):847-50. Review.

42.

Human symbionts use a host-like pathway for surface fucosylation.

Coyne MJ, Reinap B, Lee MM, Comstock LE.

Science. 2005 Mar 18;307(5716):1778-81.

43.

Tyrosine site-specific recombinases mediate DNA inversions affecting the expression of outer surface proteins of Bacteroides fragilis.

Weinacht KG, Roche H, Krinos CM, Coyne MJ, Parkhill J, Comstock LE.

Mol Microbiol. 2004 Sep;53(5):1319-30.

44.

Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont.

Comstock LE, Coyne MJ.

Bioessays. 2003 Oct;25(10):926-9. Review.

PMID:
14505359
45.

Mpi recombinase globally modulates the surface architecture of a human commensal bacterium.

Coyne MJ, Weinacht KG, Krinos CM, Comstock LE.

Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10446-51. Epub 2003 Aug 12.

46.

Extensive surface diversity of a commensal microorganism by multiple DNA inversions.

Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE.

Nature. 2001 Nov 29;414(6863):555-8.

PMID:
11734857
47.

Polysaccharide biosynthesis locus required for virulence of Bacteroides fragilis.

Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE.

Infect Immun. 2001 Jul;69(7):4342-50.

48.

Immunochemical and biological characterization of three capsular polysaccharides from a single Bacteroides fragilis strain.

Kalka-Moll WM, Wang Y, Comstock LE, Gonzalez SE, Tzianabos AO, Kasper DL.

Infect Immun. 2001 Apr;69(4):2339-44.

49.

Genetic diversity of the capsular polysaccharide C biosynthesis region of Bacteroides fragilis.

Comstock LE, Pantosti A, Kasper DL.

Infect Immun. 2000 Nov;68(11):6182-8.

Supplemental Content

Loading ...
Support Center