Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 115

1.

Enabling Community Health Worker Recognition and Referral of Surgical Diseases: Pilot Study Results of a Pictorial Guide.

Gualy S, Herrera C, Warden C, Valle T, Barnum J, Colman B, Siu A, Swanson JW.

World J Surg. 2019 Sep 11. doi: 10.1007/s00268-019-05173-x. [Epub ahead of print]

PMID:
31511941
2.

The Ambiguous Medical Abbreviation (AMA) Study - Challenges and Opportunities.

Holper S, Barmanray R, Colman B, Yates CJ, Liew D, Smallwood D.

Intern Med J. 2019 Aug 6. doi: 10.1111/imj.14442. [Epub ahead of print]

PMID:
31389137
3.

Conserved Microbial Toxicity Responses for Acute and Chronic Silver Nanoparticle Treatments in Wetland Mesocosms.

Ward CS, Pan JF, Colman BP, Wang Z, Gwin CA, Williams TC, Ardis A, Gunsch CK, Hunt DE.

Environ Sci Technol. 2019 Mar 19;53(6):3268-3276. doi: 10.1021/acs.est.8b06654. Epub 2019 Feb 28.

PMID:
30776221
4.

Plant and Microbial Responses to Repeated Cu(OH)2 Nanopesticide Exposures Under Different Fertilization Levels in an Agro-Ecosystem.

Simonin M, Colman BP, Tang W, Judy JD, Anderson SM, Bergemann CM, Rocca JD, Unrine JM, Cassar N, Bernhardt ES.

Front Microbiol. 2018 Jul 31;9:1769. doi: 10.3389/fmicb.2018.01769. eCollection 2018.

5.

Dosing, Not the Dose: Comparing Chronic and Pulsed Silver Nanoparticle Exposures.

Colman BP, Baker LF, King RS, Matson CW, Unrine JM, Marinakos SM, Gorka DE, Bernhardt ES.

Environ Sci Technol. 2018 Sep 4;52(17):10048-10056. doi: 10.1021/acs.est.8b01700. Epub 2018 Aug 21.

PMID:
30075078
6.

Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment.

Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, de la Barrera B, Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES.

Ecol Appl. 2018 Sep;28(6):1435-1449. doi: 10.1002/eap.1742. Epub 2018 Jun 25.

7.

Stress Responses of Aquatic Plants to Silver Nanoparticles.

Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR.

Environ Sci Technol. 2018 Mar 6;52(5):2558-2565. doi: 10.1021/acs.est.7b05837. Epub 2018 Feb 12.

PMID:
29381864
8.

Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles.

Stegemeier JP, Colman BP, Schwab F, Wiesner MR, Lowry GV.

Environ Sci Technol. 2017 May 2;51(9):4936-4943. doi: 10.1021/acs.est.6b06491. Epub 2017 Apr 19.

PMID:
28383882
9.

Phytotoxicity of soluble graphitic nanofibers to model plant species.

Gorka DE, Jeger JL, Zhang H, Ma Y, Colman BP, Bernhardt ES, Liu J.

Environ Toxicol Chem. 2016 Dec;35(12):2941-2947. doi: 10.1002/etc.3478. Epub 2016 Jul 14.

PMID:
27153481
10.

Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study.

Baalousha M, Yang Y, Vance ME, Colman BP, McNeal S, Xu J, Blaszczak J, Steele M, Bernhardt E, Hochella MF Jr.

Sci Total Environ. 2016 Jul 1;557-558:740-53. doi: 10.1016/j.scitotenv.2016.03.132. Epub 2016 Apr 17. Review.

PMID:
27046139
11.

Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.

Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, Gunsch CK, DiGulio RT, Liu J.

Environ Sci Technol. 2015 Aug 18;49(16):10093-8. doi: 10.1021/acs.est.5b01711. Epub 2015 Jul 29.

PMID:
26146787
12.

Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

Stegemeier JP, Schwab F, Colman BP, Webb SM, Newville M, Lanzirotti A, Winkler C, Wiesner MR, Lowry GV.

Environ Sci Technol. 2015 Jul 21;49(14):8451-60. doi: 10.1021/acs.est.5b01147. Epub 2015 Jul 13.

PMID:
26106801
13.

Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius.

Park SY, Chung J, Colman BP, Matson CW, Kim Y, Lee BC, Kim PJ, Choi K, Choi J.

Environ Toxicol Chem. 2015 Sep;34(9):2023-32. doi: 10.1002/etc.3019.

PMID:
25892495
14.

Importance of a nanoscience approach in the understanding of major aqueous contamination scenarios: case study from a recent coal ash spill.

Yang Y, Colman BP, Bernhardt ES, Hochella MF.

Environ Sci Technol. 2015 Mar 17;49(6):3375-82. doi: 10.1021/es505662q. Epub 2015 Feb 25.

PMID:
25688977
15.

Silver nanoparticle toxicity to Atlantic killifish (Fundulus heteroclitus) and Caenorhabditis elegans: a comparison of mesocosm, microcosm, and conventional laboratory studies.

Bone AJ, Matson CW, Colman BP, Yang X, Meyer JN, Di Giulio RT.

Environ Toxicol Chem. 2015 Feb;34(2):275-82. doi: 10.1002/etc.2806.

PMID:
25393776
16.

A mechanistic study of plant and microbial controls over R* for nitrogen in an annual grassland.

Yelenik SG, Colman BP, Levine JM, HilleRisLambers J.

PLoS One. 2014 Aug 29;9(8):e106059. doi: 10.1371/journal.pone.0106059. eCollection 2014.

17.

Inorganic carbon acquisition in the acid-tolerant alga Chlorella kessleri.

El-Ansari O, Colman B.

Physiol Plant. 2015 Jan;153(1):175-82. doi: 10.1111/ppl.12228. Epub 2014 Jun 10.

PMID:
24828745
18.

Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems.

Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES.

Environ Sci Technol. 2014 May 6;48(9):5229-36. doi: 10.1021/es405454v. Epub 2014 Apr 17.

PMID:
24693948
19.

Sulfidation of silver nanoparticles: natural antidote to their toxicity.

Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV.

Environ Sci Technol. 2013;47(23):13440-8. doi: 10.1021/es403527n. Epub 2013 Nov 15.

20.

Drought-induced saltwater incursion leads to increased wetland nitrogen export.

Ardón M, Morse JL, Colman BP, Bernhardt ES.

Glob Chang Biol. 2013 Oct;19(10):2976-85. doi: 10.1111/gcb.12287. Epub 2013 Aug 13.

PMID:
23749653
21.

Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario.

Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES.

PLoS One. 2013;8(2):e57189. doi: 10.1371/journal.pone.0057189. Epub 2013 Feb 27.

22.

Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.

Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES.

PLoS One. 2012;7(10):e47674. doi: 10.1371/journal.pone.0047674. Epub 2012 Oct 16.

23.

Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation.

Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT.

Environ Sci Technol. 2012 Jul 3;46(13):6925-33. doi: 10.1021/es204683m. Epub 2012 Jun 19.

PMID:
22680837
24.

Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment.

Colman BP, Wang SY, Auffan M, Wiesner MR, Bernhardt ES.

Ecotoxicology. 2012 Oct;21(7):1867-77. doi: 10.1007/s10646-012-0920-5. Epub 2012 May 9.

PMID:
22569948
25.

Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR.

Environ Sci Technol. 2012 Jul 3;46(13):7027-36. doi: 10.1021/es204608d. Epub 2012 Apr 30.

PMID:
22463850
26.

Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW.

Environ Sci Technol. 2012 Jul 3;46(13):6915-24. doi: 10.1021/es204682q. Epub 2012 Jun 19.

PMID:
22452441
27.

Characterization and environmental implications of nano- and larger TiO(2) particles in sewage sludge, and soils amended with sewage sludge.

Kim B, Murayama M, Colman BP, Hochella MF Jr.

J Environ Monit. 2012 Apr;14(4):1129-37. doi: 10.1039/c2em10809g. Epub 2012 Feb 20.

PMID:
22349742
28.

Inorganic carbon acquisition in two green marine Stichococcus species.

Moazami-Goudarzi M, Colman B.

Plant Cell Environ. 2011 Sep;34(9):1465-72. doi: 10.1111/j.1365-3040.2011.02345.x. Epub 2011 Jun 26.

29.

Evidence for the occurrence of photorespiration in synurophyte algae.

Bhatti S, Colman B.

Photosynth Res. 2011 Sep;109(1-3):251-6. doi: 10.1007/s11120-011-9639-z. Epub 2011 Mar 26.

PMID:
21442299
30.

More than the ions: the effects of silver nanoparticles on Lolium multiflorum.

Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES.

Environ Sci Technol. 2011 Mar 15;45(6):2360-7. doi: 10.1021/es103995x. Epub 2011 Feb 22.

PMID:
21341685
31.

An ecological perspective on nanomaterial impacts in the environment.

Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L.

J Environ Qual. 2010 Nov-Dec;39(6):1954-65. Review.

PMID:
21284292
32.

California annual grass invaders: the drivers or passengers of change?

Hillerislambers J, Yelenik SG, Colman BP, Levine JM.

J Ecol. 2010 Sep;98(5):1147-1156.

33.

Amino acid abundance and proteolytic potential in North American soils.

Hofmockel KS, Fierer N, Colman BP, Jackson RB.

Oecologia. 2010 Aug;163(4):1069-78. doi: 10.1007/s00442-010-1601-9. Epub 2010 Mar 28.

PMID:
20349250
34.

PHOTOSYNTHETIC INORGANIC CARBON ACQUISITION IN AN ACID-TOLERANT, FREE-LIVING SPECIES OF COCCOMYXA (CHLOROPHYTA)(1).

Verma V, Bhatti S, Huss VA, Colman B.

J Phycol. 2009 Aug;45(4):847-54. doi: 10.1111/j.1529-8817.2009.00718.x. Epub 2009 Jul 28.

PMID:
27034214
35.

Understanding and eliminating iron interference in colorimetric nitrate and nitrite analysis.

Colman BP, Schimel JP.

Environ Monit Assess. 2010 Jun;165(1-4):633-41. doi: 10.1007/s10661-009-0974-x. Epub 2009 Jun 3. Erratum in: Environ Monit Assess. 2010 Jun;165(1-4):693. Schimel, Joshua P [added].

PMID:
19496004
36.

Inorganic carbon acquisition in some synurophyte algae.

Bhatti S, Colman B.

Physiol Plant. 2008 May;133(1):33-40. doi: 10.1111/j.1399-3054.2008.01061.x. Epub 2008 Feb 21.

PMID:
18298411
37.
38.

Mechanism of CO2 acquisition in an acid-tolerant Chlamydomonas.

Balkos KD, Colman B.

Plant Cell Environ. 2007 Jun;30(6):745-52.

39.

Sensing of Elevating CO(2) in a Marine Diatom: Molecular Mechanisms and Implications.

Matsuda Y, Harada H, Nakajima K, Colman B.

Plant Signal Behav. 2007 Mar;2(2):109-11.

40.

Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga.

Huertas IE, Colman B, Espie GS.

Plant Physiol. 2002 Sep;130(1):284-91.

41.

The energy source for CO2 transport in the marine microalga Nannochloris atomus.

Huertas IE, Espie GS, Colman B.

Planta. 2002 Apr;214(6):947-53. Epub 2002 Jan 15.

PMID:
11941472
42.
43.
44.
45.

Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gaditana.

Huertas IE, Espie GS, Colman B, Lubian LM.

Planta. 2000 Jun;211(1):43-9.

PMID:
10923702
50.

Supplemental Content

Loading ...
Support Center