Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 83

1.

Effect of mechanically stimulated saliva on initial human dental biofilm formation.

Inui T, Palmer RJ Jr, Shah N, Li W, Cisar JO, Wu CD.

Sci Rep. 2019 Aug 14;9(1):11805. doi: 10.1038/s41598-019-48211-3.

2.

Comparative Structural and Antigenic Characterization of Genetically Distinct Flavobacterium psychrophilum O-Polysaccharides.

Cisar JO, Bush CA, Wiens GD.

Front Microbiol. 2019 May 8;10:1041. doi: 10.3389/fmicb.2019.01041. eCollection 2019.

3.

Interbacterial Adhesion Networks within Early Oral Biofilms of Single Human Hosts.

Palmer RJ Jr, Shah N, Valm A, Paster B, Dewhirst F, Inui T, Cisar JO.

Appl Environ Microbiol. 2017 May 17;83(11). pii: e00407-17. doi: 10.1128/AEM.00407-17. Print 2017 Jun 1.

4.

Cell Surface Glycoside Hydrolases of Streptococcus gordonii Promote Growth in Saliva.

Yang J, Zhou Y, Zhang L, Shah N, Jin C, Palmer RJ Jr, Cisar JO.

Appl Environ Microbiol. 2016 Aug 15;82(17):5278-86. doi: 10.1128/AEM.01291-16. Print 2016 Sep 1.

5.

Differential Utilization of Basic Proline-Rich Glycoproteins during Growth of Oral Bacteria in Saliva.

Zhou Y, Yang J, Zhang L, Zhou X, Cisar JO, Palmer RJ Jr.

Appl Environ Microbiol. 2016 Aug 15;82(17):5249-58. doi: 10.1128/AEM.01111-16. Print 2016 Sep 1.

6.
7.

Probing of microbial biofilm communities for coadhesion partners.

Ruhl S, Eidt A, Melzl H, Reischl U, Cisar JO.

Appl Environ Microbiol. 2014 Nov;80(21):6583-90. doi: 10.1128/AEM.01826-14. Epub 2014 Aug 8.

8.
9.

Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species.

Yang J, Yoshida Y, Cisar JO.

Mol Oral Microbiol. 2014 Feb;29(1):24-31. doi: 10.1111/omi.12042.

10.

Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a.

Xu D, Cisar JO, Poly F, Yang J, Albanese J, Dharmasena M, Wai T, Guerry P, Kopecko DJ.

Genome Announc. 2013 Aug 22;1(4). pii: e00650-13. doi: 10.1128/genomeA.00650-13.

11.

Comparative structural and molecular characterization of Streptococcus pneumoniae capsular polysaccharide serogroup 10.

Yang J, Nahm MH, Bush CA, Cisar JO.

J Biol Chem. 2011 Oct 14;286(41):35813-22. doi: 10.1074/jbc.M111.255422. Epub 2011 Aug 22.

12.

Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development.

Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, Cisar JO, Das A, Narayana SV, Ton-That H.

Mol Microbiol. 2011 Sep;81(5):1205-20. doi: 10.1111/j.1365-2958.2011.07745.x. Epub 2011 Jul 27.

13.

Structure of type 3Gn coaggregation receptor polysaccharide from Streptococcus cristatus LS4.

Yang J, Cisar JO, Bush CA.

Carbohydr Res. 2011 Aug 16;346(11):1342-6. doi: 10.1016/j.carres.2011.04.035. Epub 2011 May 3.

14.

Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding.

Wu C, Mishra A, Yang J, Cisar JO, Das A, Ton-That H.

J Bacteriol. 2011 Jul;193(13):3197-206. doi: 10.1128/JB.00173-11. Epub 2011 Apr 29.

15.

The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development.

Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H.

Mol Microbiol. 2010 Aug;77(4):841-54. doi: 10.1111/j.1365-2958.2010.07252.x. Epub 2010 Jun 10.

16.

Structure and molecular characterization of Streptococcus pneumoniae capsular polysaccharide 10F by carbohydrate engineering in Streptococcus oralis.

Yang J, Shelat NY, Bush CA, Cisar JO.

J Biol Chem. 2010 Jul 30;285(31):24217-27. doi: 10.1074/jbc.M110.123562. Epub 2010 May 27.

17.

Shear-enhanced oral microbial adhesion.

Ding AM, Palmer RJ Jr, Cisar JO, Kolenbrander PE.

Appl Environ Microbiol. 2010 Feb;76(4):1294-7. doi: 10.1128/AEM.02083-09. Epub 2009 Dec 18.

18.

Comparative structural and molecular characterization of ribitol-5-phosphate-containing Streptococcus oralis coaggregation receptor polysaccharides.

Yang J, Ritchey M, Yoshida Y, Bush CA, Cisar JO.

J Bacteriol. 2009 Mar;191(6):1891-900. doi: 10.1128/JB.01532-08. Epub 2009 Jan 16.

19.

Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque.

Chalmers NI, Palmer RJ Jr, Cisar JO, Kolenbrander PE.

J Bacteriol. 2008 Dec;190(24):8145-54. doi: 10.1128/JB.00983-08. Epub 2008 Sep 19.

20.

Molecular and antigenic characterization of a Streptococcus oralis coaggregation receptor polysaccharide by carbohydrate engineering in Streptococcus gordonii.

Yoshida Y, Yang J, Peaker PE, Kato H, Bush CA, Cisar JO.

J Biol Chem. 2008 May 2;283(18):12654-64. doi: 10.1074/jbc.M801412200. Epub 2008 Feb 25.

21.

The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies.

Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL.

Cell Host Microbe. 2007 Mar 15;1(1):51-61.

22.
23.

Amended description of the genes for synthesis of Actinomyces naeslundii T14V type 1 fimbriae and associated adhesin.

Chen P, Cisar JO, Hess S, Ho JT, Leung KP.

Infect Immun. 2007 Aug;75(8):4181-5. Epub 2007 May 7.

24.

Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii.

Mishra A, Das A, Cisar JO, Ton-That H.

J Bacteriol. 2007 Apr;189(8):3156-65. Epub 2007 Feb 2.

25.

Streptococcal receptor polysaccharides: recognition molecules for oral biofilm formation.

Yoshida Y, Palmer RJ, Yang J, Kolenbrander PE, Cisar JO.

BMC Oral Health. 2006 Jun 15;6 Suppl 1:S12.

26.
27.

Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides.

Yoshida Y, Ganguly S, Bush CA, Cisar JO.

J Bacteriol. 2006 Jun;188(11):4125-30.

28.

Carbohydrate engineering of the recognition motifs in streptococcal co-aggregation receptor polysaccharides.

Yoshida Y, Ganguly S, Bush CA, Cisar JO.

Mol Microbiol. 2005 Oct;58(1):244-56.

29.
30.
31.
32.

Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque.

Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE.

J Bacteriol. 2003 Jun;185(11):3400-9.

33.

Adhesion of viridans group streptococci to sialic acid-, galactose- and N-acetylgalactosamine-containing receptors.

Takahashi Y, Ruhl S, Yoon JW, Sandberg AL, Cisar JO.

Oral Microbiol Immunol. 2002 Aug;17(4):257-62.

PMID:
12121477
35.
37.

An alternative interpretation of nanobacteria-induced biomineralization.

Cisar JO, Xu DQ, Thompson J, Swaim W, Hu L, Kopecko DJ.

Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11511-5.

38.

Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae.

Yeung MK, Donkersloot JA, Cisar JO, Ragsdale PA.

Infect Immun. 1998 Apr;66(4):1482-91.

40.
41.

Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface.

Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL.

Adv Dent Res. 1997 Apr;11(1):168-75. Review.

PMID:
9524453
42.

Recognition of immunoglobulin A1 by oral actinomyces and streptococcal lectins.

Ruhl S, Sandberg AL, Cole MF, Cisar JO.

Infect Immun. 1996 Dec;64(12):5421-4.

43.

Fimbrial-mediated colonization of murine teeth by Actinomyces naeslundii.

Beem JE, Hurley CG, Nesbitt WE, Croft DF, Marks RG, Cisar JO, Clark WB.

Oral Microbiol Immunol. 1996 Aug;11(4):259-65.

PMID:
9002879
44.

Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides.

Cisar JO, Sandberg AL, Abeygunawardana C, Reddy GP, Bush CA.

Glycobiology. 1995 Oct;5(7):655-62.

PMID:
8608267
45.

Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

Sandberg AL, Ruhl S, Joralmon RA, Brennan MJ, Sutphin MJ, Cisar JO.

Infect Immun. 1995 Jul;63(7):2625-31.

47.

Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR study.

Abeygunawardana C, Bush CA, Cisar JO.

Biochemistry. 1991 Sep 3;30(35):8568-77.

PMID:
1888724
48.

Immunochemical and functional studies of Actinomyces viscosus T14V type 1 fimbriae with monoclonal and polyclonal antibodies directed against the fimbrial subunit.

Cisar JO, Barsumian EL, Siraganian RP, Clark WB, Yeung MK, Hsu SD, Curl SH, Vatter AE, Sandberg AL.

J Gen Microbiol. 1991 Aug;137(8):1971-9.

PMID:
1683401
49.
50.

Cooperative complement- and bacterial lectin-initiated bactericidal activity of polymorphonuclear leukocytes.

Kurashima C, Sandberg AL, Cisar JO, Mudrick LL.

Infect Immun. 1991 Jan;59(1):216-21.

Supplemental Content

Loading ...
Support Center