Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction.

Sparks DS, Saifzadeh S, Savi FM, Dlaska CE, Berner A, Henkel J, Reichert JC, Wullschleger M, Ren J, Cipitria A, McGovern JA, Steck R, Wagels M, Woodruff MA, Schuetz MA, Hutmacher DW.

Nat Protoc. 2020 Feb 14. doi: 10.1038/s41596-019-0271-2. [Epub ahead of print]

PMID:
32060491
2.

Alginate Hydrogels for In Vivo Bone Regeneration: The Immune Competence of the Animal Model Matters.

Garske DS, Schmidt-Bleek K, Ellinghaus A, Dienelt A, Gu L, Mooney DJ, Duda G, Cipitria A.

Tissue Eng Part A. 2020 Feb 11. doi: 10.1089/ten.TEA.2019.0310. [Epub ahead of print]

PMID:
32046626
3.

Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration.

Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A.

Biomaterials. 2019 Oct;217:119294. doi: 10.1016/j.biomaterials.2019.119294. Epub 2019 Jun 20.

PMID:
31276949
4.

Hydrolytically-degradable click-crosslinked alginate hydrogels.

Lueckgen A, Garske DS, Ellinghaus A, Desai RM, Stafford AG, Mooney DJ, Duda GN, Cipitria A.

Biomaterials. 2018 Oct;181:189-198. doi: 10.1016/j.biomaterials.2018.07.031. Epub 2018 Jul 24.

PMID:
30086448
5.

Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments.

Cipitria A, Salmeron-Sanchez M.

Adv Healthc Mater. 2017 Aug;6(15). doi: 10.1002/adhm.201700052. Epub 2017 May 8. Review.

PMID:
28792683
6.

In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect.

Cipitria A, Boettcher K, Schoenhals S, Garske DS, Schmidt-Bleek K, Ellinghaus A, Dienelt A, Peters A, Mehta M, Madl CM, Huebsch N, Mooney DJ, Duda GN.

Acta Biomater. 2017 Sep 15;60:50-63. doi: 10.1016/j.actbio.2017.07.032. Epub 2017 Jul 21.

PMID:
28739546
7.

Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface.

Paris M, Götz A, Hettrich I, Bidan CM, Dunlop JWC, Razi H, Zizak I, Hutmacher DW, Fratzl P, Duda GN, Wagermaier W, Cipitria A.

Acta Biomater. 2017 Sep 15;60:64-80. doi: 10.1016/j.actbio.2017.07.029. Epub 2017 Jul 20.

PMID:
28736221
8.

BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis.

Cipitria A, Wagermaier W, Zaslansky P, Schell H, Reichert JC, Fratzl P, Hutmacher DW, Duda GN.

Acta Biomater. 2015 Sep;23:282-294. doi: 10.1016/j.actbio.2015.05.015. Epub 2015 May 22.

PMID:
26004222
9.

Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae.

Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW.

Biomaterials. 2013 Dec;34(38):9960-8. doi: 10.1016/j.biomaterials.2013.09.011. Epub 2013 Sep 24.

PMID:
24075478
10.

A tissue engineering solution for segmental defect regeneration in load-bearing long bones.

Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, Woodruff MA, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW.

Sci Transl Med. 2012 Jul 4;4(141):141ra93. doi: 10.1126/scitranslmed.3003720.

11.

Porous scaffold architecture guides tissue formation.

Cipitria A, Lange C, Schell H, Wagermaier W, Reichert JC, Hutmacher DW, Fratzl P, Duda GN.

J Bone Miner Res. 2012 Jun;27(6):1275-88. doi: 10.1002/jbmr.1589.

12.

Custom-made composite scaffolds for segmental defect repair in long bones.

Reichert JC, Wullschleger ME, Cipitria A, Lienau J, Cheng TK, Schütz MA, Duda GN, Nöth U, Eulert J, Hutmacher DW.

Int Orthop. 2011 Aug;35(8):1229-36. doi: 10.1007/s00264-010-1146-x. Epub 2010 Dec 7.

Supplemental Content

Loading ...
Support Center