Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change.

Robert MA, Christofferson RC, Weber PD, Wearing HJ.

Epidemics. 2019 Sep;28:100344. doi: 10.1016/j.epidem.2019.05.003. Epub 2019 Jun 5.

2.

Investigating the probability of establishment of Zika virus and detection through mosquito surveillance under different temperature conditions.

Tramonte AR, Christofferson RC.

PLoS One. 2019 Mar 28;14(3):e0214306. doi: 10.1371/journal.pone.0214306. eCollection 2019.

3.

Spotted Fever Group Rickettsia Infection and Transmission Dynamics in Amblyomma maculatum.

Suwanbongkot C, Langohr IM, Harris EK, Dittmar W, Christofferson RC, Macaluso KR.

Infect Immun. 2019 Mar 25;87(4). pii: e00804-18. doi: 10.1128/IAI.00804-18. Print 2019 Apr.

4.

Examining the potential for South American arboviruses to spread beyond the New World.

Peña-García VH, McCracken MK, Christofferson RC.

Curr Clin Microbiol Rep. 2017 Dec;4(4):208-217. doi: 10.1007/s40588-017-0076-4. Epub 2017 Oct 19.

5.

A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses With Potential One Health Implications.

Dutuze MF, Nzayirambaho M, Mores CN, Christofferson RC.

Front Vet Sci. 2018 Apr 12;5:69. doi: 10.3389/fvets.2018.00069. eCollection 2018. Review.

6.

Tissue tropisms, infection kinetics, histologic lesions, and antibody response of the MR766 strain of Zika virus in a murine model.

Kawiecki AB, Mayton EH, Dutuze MF, Goupil BA, Langohr IM, Del Piero F, Christofferson RC.

Virol J. 2017 Apr 18;14(1):82. doi: 10.1186/s12985-017-0749-x.

7.

Pokémon Go and Exposure to Mosquito-Borne Diseases: How Not to Catch 'Em All.

Oidtman RJ, Christofferson RC, Ten Bosch QA, Espana G, Kraemer MU, Tatem A, Barker CM, Perkins TA.

PLoS Curr. 2016 Nov 15;8. pii: ecurrents.outbreaks.2d885b05c7e06a9f72e4656d56b043cd. doi: 10.1371/currents.outbreaks.2d885b05c7e06a9f72e4656d56b043cd.

8.

Bridging the Gap Between Experimental Data and Model Parameterization for Chikungunya Virus Transmission Predictions.

Christofferson RC, Mores CN, Wearing HJ.

J Infect Dis. 2016 Dec 15;214(suppl 5):S466-S470.

9.

Utility of a Dengue-Derived Monoclonal Antibody to Enhance Zika Infection In Vitro.

Charles AS, Christofferson RC.

PLoS Curr. 2016 Jul 5;8. pii: ecurrents.outbreaks.4ab8bc87c945eb41cd8a49e127082620. doi: 10.1371/currents.outbreaks.4ab8bc87c945eb41cd8a49e127082620.

10.

Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami.

Robert MA, Christofferson RC, Silva NJ, Vasquez C, Mores CN, Wearing HJ.

PLoS One. 2016 Aug 17;11(8):e0161365. doi: 10.1371/journal.pone.0161365. eCollection 2016.

11.

Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro.

Kawiecki AB, Christofferson RC.

J Infect Dis. 2016 Nov 1;214(9):1357-1360. Epub 2016 Aug 11.

PMID:
27521359
12.

Potential for Extrinsic Incubation Temperature to Alter Interplay Between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti.

Christofferson RC, Mores CN.

Environ Health Insights. 2016 Jul 25;10:119-23. doi: 10.4137/EHI.S38345. eCollection 2016.

13.

Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis.

Goupil BA, McNulty MA, Martin MJ, McCracken MK, Christofferson RC, Mores CN.

PLoS One. 2016 May 16;11(5):e0155243. doi: 10.1371/journal.pone.0155243. eCollection 2016.

14.

Short Report: Serological Evidence of Under-Reported Dengue Circulation in Sierra Leone.

de Araújo Lobo JM, Mores CN, Bausch DG, Christofferson RC.

PLoS Negl Trop Dis. 2016 Apr 26;10(4):e0004613. doi: 10.1371/journal.pntd.0004613. eCollection 2016 Apr.

15.

Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naïve populations.

Wearing HJ, Robert MA, Christofferson RC.

Parasitology. 2016 Apr 5:1-14. [Epub ahead of print]

PMID:
27045211
16.

Zika Virus Emergence and Expansion: Lessons Learned from Dengue and Chikungunya May Not Provide All the Answers.

Christofferson RC.

Am J Trop Med Hyg. 2016 Jul 6;95(1):15-8. doi: 10.4269/ajtmh.15-0866. Epub 2016 Feb 22. Review.

17.

Aedes aegypti anti-salivary gland antibody concentration and dengue virus exposure history in healthy individuals living in an endemic area in Colombia.

Londoño-Rentería B, Cárdenas JC, Giovanni JE, Cárdenas L, Villamizar P, Rolón J, Chisenhall DM, Christofferson RC, Carvajal DJ, Pérez OG, Wesson DM, Mores CN.

Biomedica. 2015 Oct-Dec;35(4):572-81. doi: 10.7705/biomedica.v35i4.2530.

18.

A role for vector control in dengue vaccine programs.

Christofferson RC, Mores CN.

Vaccine. 2015 Dec 10;33(50):7069-74. doi: 10.1016/j.vaccine.2015.09.114. Epub 2015 Oct 21.

PMID:
26478199
19.

Cofeeding intra- and interspecific transmission of an emerging insect-borne rickettsial pathogen.

Brown LD, Christofferson RC, Banajee KH, Del Piero F, Foil LD, Macaluso KR.

Mol Ecol. 2015 Nov;24(21):5475-89. doi: 10.1111/mec.13403.

20.

A Reevaluation of the Role of Aedes albopictus in Dengue Transmission.

Christofferson RC.

J Infect Dis. 2015 Oct 15;212(8):1177-9. doi: 10.1093/infdis/jiv174. Epub 2015 Mar 17. No abstract available.

21.

Investigations of Koutango Virus Infectivity and Dissemination Dynamics in Aedes aegypti Mosquitoes.

de Araújo Lobo JM, Christofferson RC, Mores CN.

Environ Health Insights. 2014 Oct 29;8(Suppl 2):9-13. doi: 10.4137/EHI.S16005. eCollection 2014.

22.

Chikungunya viral fitness measures within the vector and subsequent transmission potential.

Christofferson RC, Chisenhall DM, Wearing HJ, Mores CN.

PLoS One. 2014 Oct 13;9(10):e110538. doi: 10.1371/journal.pone.0110538. eCollection 2014.

23.

Aedes aegypti salivary protein "aegyptin" co-inoculation modulates dengue virus infection in the vertebrate host.

McCracken MK, Christofferson RC, Grasperge BJ, Calvo E, Chisenhall DM, Mores CN.

Virology. 2014 Nov;468-470:133-139. doi: 10.1016/j.virol.2014.07.019. Epub 2014 Aug 28.

24.

Characterizing the likelihood of dengue emergence and detection in naïve populations.

Christofferson RC, Mores CN, Wearing HJ.

Parasit Vectors. 2014 Jun 23;7:282. doi: 10.1186/1756-3305-7-282.

25.

Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes.

Chisenhall DM, Christofferson RC, McCracken MK, Johnson AM, Londono-Renteria B, Mores CN.

Parasit Vectors. 2014 May 30;7:252. doi: 10.1186/1756-3305-7-252.

26.

The role of the mosquito in a dengue human infection model.

Mores CN, Christofferson RC, Davidson SA.

J Infect Dis. 2014 Jun 15;209 Suppl 2:S71-8. doi: 10.1093/infdis/jiu110.

27.

Towards an early warning system for forecasting human west nile virus incidence.

Manore CA, Davis J, Christofferson RC, Wesson D, Hyman JM, Mores CN.

PLoS Curr. 2014 Mar 6;6. pii: ecurrents.outbreaks.ed6f0f8a61d20ae5f32aaa5c2b8d3c23. doi: 10.1371/currents.outbreaks.ed6f0f8a61d20ae5f32aaa5c2b8d3c23.

28.

Effect of dengue-2 virus infection on protein expression in the salivary glands of Aedes aegypti mosquitoes.

Chisenhall DM, Londono BL, Christofferson RC, McCracken MK, Mores CN.

Am J Trop Med Hyg. 2014 Mar;90(3):431-7. doi: 10.4269/ajtmh.13-0412. Epub 2014 Jan 20.

29.

Towards an early warning system for forecasting human west nile virus incidence.

Manore CA, Davis JK, Christofferson RC, Wesson DM, Hyman JM, Mores CN.

PLoS Curr. 2014 May 30;6. pii: ecurrents.outbreaks.f0b3978230599a56830ce30cb9ce0500. doi: 10.1371/currents.outbreaks.f0b3978230599a56830ce30cb9ce0500.

30.

Use of anti-Aedes aegypti salivary extract antibody concentration to correlate risk of vector exposure and dengue transmission risk in Colombia.

Londono-Renteria B, Cardenas JC, Cardenas LD, Christofferson RC, Chisenhall DM, Wesson DM, McCracken MK, Carvajal D, Mores CN.

PLoS One. 2013 Dec 2;8(12):e81211. doi: 10.1371/journal.pone.0081211. eCollection 2013.

31.

Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing.

McCracken MK, Christofferson RC, Chisenhall DM, Mores CN.

J Virol. 2014 Feb;88(4):1881-9. doi: 10.1128/JVI.01218-13. Epub 2013 Nov 6.

32.

An explosive epidemic of DENV-3 in Cairns, Australia.

Ritchie SA, Pyke AT, Hall-Mendelin S, Day A, Mores CN, Christofferson RC, Gubler DJ, Bennett SN, van den Hurk AF.

PLoS One. 2013 Jul 16;8(7):e68137. doi: 10.1371/journal.pone.0068137. Print 2013. Erratum in: PLoS One. 2013;8(12). doi:10.1371/annotation/a8dfd4ee-f4b7-443e-bf78-ebb0dab4e55b. PLoS One. 2014;9(8):e105846.

33.

Development of a transmission model for dengue virus.

Christofferson RC, McCracken MK, Johnson AM, Chisenhall DM, Mores CN.

Virol J. 2013 Apr 23;10:127. doi: 10.1186/1743-422X-10-127.

34.

Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype.

Christofferson RC, Mores CN.

PLoS One. 2011 Jan 27;6(1):e16298. doi: 10.1371/journal.pone.0016298.

35.

Supplemental Content

Loading ...
Support Center