Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 184

1.

Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations.

Gysel N, Dixit P, Schmitz DA, Engling G, Cho AK, Cocker DR, Karavalakis G.

Sci Total Environ. 2018 Aug 15;633:1429-1436. doi: 10.1016/j.scitotenv.2018.03.318. Epub 2018 Apr 3.

PMID:
29758895
2.

A Chemical Perspective of Pharmacology and Toxicology.

Cho AK.

Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:1-16. doi: 10.1146/annurev-pharmtox-010617-053205. Review.

PMID:
29309258
3.

Carbohydrate Composition Associated with the 2-Year Incidence of Metabolic Syndrome in Korean Adults.

Cho NH, Cho AK, Kim HK, Kim JB, Lee KE, Kim SS, Kim YJ, Jang HC, Baik I.

Clin Nutr Res. 2017 Apr;6(2):122-129. doi: 10.7762/cnr.2017.6.2.122. Epub 2017 Apr 24.

4.

Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles.

Karavalakis G, Gysel N, Schmitz DA, Cho AK, Sioutas C, Schauer JJ, Cocker DR, Durbin TD.

Sci Total Environ. 2017 Apr 15;584-585:1230-1238. doi: 10.1016/j.scitotenv.2017.01.187. Epub 2017 Jan 30.

PMID:
28148458
5.

Trends in Tramadol: Pharmacology, Metabolism, and Misuse.

Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R.

Anesth Analg. 2017 Jan;124(1):44-51. Review.

PMID:
27861439
6.

Chemical reactivities of ambient air samples in three Southern California communities.

Eiguren-Fernandez A, Di Stefano E, Schmitz DA, Guarieiro AL, Salinas EM, Nasser E, Froines JR, Cho AK.

J Air Waste Manag Assoc. 2015 Mar;65(3):270-7. doi: 10.1080/10962247.2014.988307.

7.

Clinical and pharmacological aspects of bath salt use: a review of the literature and case reports.

Miotto K, Striebel J, Cho AK, Wang C.

Drug Alcohol Depend. 2013 Sep 1;132(1-2):1-12. doi: 10.1016/j.drugalcdep.2013.06.016. Epub 2013 Aug 1. Review.

8.

Ambient vapor samples activate the Nrf2-ARE pathway in human bronchial epithelial BEAS-2B cells.

Shinkai Y, Nakajima S, Eiguren-Fernandez A, Di Stefano E, Schmitz DA, Froines JR, Cho AK, Kumagai Y.

Environ Toxicol. 2014 Nov;29(11):1292-300. doi: 10.1002/tox.21860. Epub 2013 May 6.

9.

Physiological response of normal and RD mouse retinal ganglion cells to electrical stimulation.

Cho AK, Sampath AP, Weiland JD.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2985-8. doi: 10.1109/EMBC.2012.6346591.

PMID:
23366552
10.

Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35 causes inhibition of its catalytic activity and activation of ASK1/p38 signaling.

Shinkai Y, Iwamoto N, Miura T, Ishii T, Cho AK, Kumagai Y.

Chem Res Toxicol. 2012 Jun 18;25(6):1222-30. doi: 10.1021/tx300069r. Epub 2012 Jun 1.

PMID:
22587396
11.

Physiological response of mouse retinal ganglion cells to electrical stimulation: effect of soma size.

Cho AK, Sampath AP, Weiland JD.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1081-4. doi: 10.1109/IEMBS.2011.6090252.

12.

Retinal prostheses: current clinical results and future needs.

Weiland JD, Cho AK, Humayun MS.

Ophthalmology. 2011 Nov;118(11):2227-37. doi: 10.1016/j.ophtha.2011.08.042. Review.

PMID:
22047893
13.

Glyceraldehyde-3-phosphate dehydrogenase as a quinone reductase in the suppression of 1,2-naphthoquinone protein adduct formation.

Miura T, Shinkai Y, Hirose R, Iwamoto N, Cho AK, Kumagai Y.

Free Radic Biol Med. 2011 Dec 1;51(11):2082-9. doi: 10.1016/j.freeradbiomed.2011.09.008. Epub 2011 Sep 16.

PMID:
21963991
14.

The chemical biology of naphthoquinones and its environmental implications.

Kumagai Y, Shinkai Y, Miura T, Cho AK.

Annu Rev Pharmacol Toxicol. 2012;52:221-47. doi: 10.1146/annurev-pharmtox-010611-134517. Epub 2011 Sep 13. Review.

PMID:
21942631
15.

GSH-mediated S-transarylation of a quinone glyceraldehyde-3-phosphate dehydrogenase conjugate.

Miura T, Kakehashi H, Shinkai Y, Egara Y, Hirose R, Cho AK, Kumagai Y.

Chem Res Toxicol. 2011 Nov 21;24(11):1836-44. doi: 10.1021/tx200025y. Epub 2011 Sep 1.

PMID:
21827172
16.

Initial response and cellular protection through the Keap1/Nrf2 system during the exposure of primary mouse hepatocytes to 1,2-naphthoquinone.

Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK, Kumagai Y.

Chem Res Toxicol. 2011 Apr 18;24(4):559-67. doi: 10.1021/tx100427p. Epub 2011 Mar 8.

PMID:
21384861
17.

Redox and electrophilic properties of vapor- and particle-phase components of ambient aerosols.

Eiguren-Fernandez A, Shinyashiki M, Schmitz DA, DiStefano E, Hinds W, Kumagai Y, Cho AK, Froines JR.

Environ Res. 2010 Apr;110(3):207-12. doi: 10.1016/j.envres.2010.01.009. Epub 2010 Feb 11.

18.

Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies.

Biswas S, Verma V, Schauer JJ, Cassee FR, Cho AK, Sioutas C.

Environ Sci Technol. 2009 May 15;43(10):3905-12.

PMID:
19544906
19.

Determination of metal-based hydroxyl radical generating capacity of ambient and diesel exhaust particles.

DiStefano E, Eiguren-Fernandez A, Delfino RJ, Sioutas C, Froines JR, Cho AK.

Inhal Toxicol. 2009 Aug;21(9):731-8. doi: 10.1080/08958370802491433.

PMID:
19242849
20.

Electrophilic and redox properties of diesel exhaust particles.

Shinyashiki M, Eiguren-Fernandez A, Schmitz DA, Di Stefano E, Li N, Linak WP, Cho SH, Froines JR, Cho AK.

Environ Res. 2009 Apr;109(3):239-44. doi: 10.1016/j.envres.2008.12.008. Epub 2009 Feb 6.

PMID:
19200952
21.

Redox cycling of 9,10-phenanthraquinone to cause oxidative stress is terminated through its monoglucuronide conjugation in human pulmonary epithelial A549 cells.

Taguchi K, Shimada M, Fujii S, Sumi D, Pan X, Yamano S, Nishiyama T, Hiratsuka A, Yamamoto M, Cho AK, Froines JR, Kumagai Y.

Free Radic Biol Med. 2008 Apr 15;44(8):1645-55. doi: 10.1016/j.freeradbiomed.2008.01.024. Epub 2008 Feb 9.

PMID:
18294972
22.

Chemical knockdown of protein-tyrosine phosphatase 1B by 1,2-naphthoquinone through covalent modification causes persistent transactivation of epidermal growth factor receptor.

Iwamoto N, Sumi D, Ishii T, Uchida K, Cho AK, Froines JR, Kumagai Y.

J Biol Chem. 2007 Nov 16;282(46):33396-404. Epub 2007 Sep 18.

23.

An approach to evaluate two-electron reduction of 9,10-phenanthraquinone and redox activity of the hydroquinone associated with oxidative stress.

Taguchi K, Fujii S, Yamano S, Cho AK, Kamisuki S, Nakai Y, Sugawara F, Froines JR, Kumagai Y.

Free Radic Biol Med. 2007 Sep 1;43(5):789-99. Epub 2007 May 24.

PMID:
17664142
24.

Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

Melega WP, Jorgensen MJ, Laćan G, Way BM, Pham J, Morton G, Cho AK, Fairbanks LA.

Neuropsychopharmacology. 2008 May;33(6):1441-52. Epub 2007 Jul 11.

25.

Relationship between redox activity and chemical speciation of size-fractionated particulate matter.

Ntziachristos L, Froines JR, Cho AK, Sioutas C.

Part Fibre Toxicol. 2007 Jun 7;4:5.

26.

Effects of naphthoquinone on airway responsiveness in the presence or absence of antigen in mice.

Inoue K, Takano H, Ichinose T, Tomura S, Yanagisawa R, Sakurai M, Sumi D, Cho AK, Hiyoshi K, Kumagai Y.

Arch Toxicol. 2007 Aug;81(8):575-81. Epub 2007 Feb 22.

PMID:
17318628
27.

Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling.

Melega WP, Cho AK, Harvey D, Laćan G.

Synapse. 2007 Apr;61(4):216-20.

PMID:
17230548
28.

Escalating dose pretreatment induces pharmacodynamic and not pharmacokinetic tolerance to a subsequent high-dose methamphetamine binge.

O'Neil ML, Kuczenski R, Segal DS, Cho AK, Lacan G, Melega WP.

Synapse. 2006 Nov;60(6):465-73.

PMID:
16897726
29.

Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice.

Kleinman MT, Hamade A, Meacher D, Oldham M, Sioutas C, Chakrabarti B, Stram D, Froines JR, Cho AK.

J Air Waste Manag Assoc. 2005 Sep;55(9):1277-88.

PMID:
16259423
30.

Redox activity of airborne particulate matter at different sites in the Los Angeles Basin.

Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR.

Environ Res. 2005 Sep;99(1):40-7.

PMID:
16053926
31.

1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea.

Kikuno S, Taguchi K, Iwamoto N, Yamano S, Cho AK, Froines JR, Kumagai Y.

Toxicol Appl Pharmacol. 2006 Jan 1;210(1-2):47-54. Epub 2005 Jul 21.

PMID:
16039679
32.

Prolonged exposure of rats to intravenous methamphetamine: behavioral and neurochemical characterization.

Segal DS, Kuczenski R, O'Neil ML, Melega WP, Cho AK.

Psychopharmacology (Berl). 2005 Jul;180(3):501-12. Epub 2005 Mar 15.

PMID:
15959831
33.

The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions.

Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK.

Chem Biol Interact. 2005 Jun 30;155(1-2):97-110.

PMID:
15950210
34.

Effects of a single intratracheal administration of phenanthraquinone on murine lung.

Hiyoshi K, Takano H, Inoue K, Ichinose T, Yanagisawa R, Tomura S, Cho AK, Froines JR, Kumagai Y.

J Appl Toxicol. 2005 Jan-Feb;25(1):47-51.

PMID:
15669044
35.

An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system.

Rodriguez CE, Shinyashiki M, Froines J, Yu RC, Fukuto JM, Cho AK.

Toxicology. 2004 Sep 1;201(1-3):185-96.

PMID:
15297032
36.

Inherent redox properties of diesel exhaust particles: catalysis of the generation of reactive oxygen species by biological reductants.

Pan CJ, Schmitz DA, Cho AK, Froines J, Fukuto JM.

Toxicol Sci. 2004 Sep;81(1):225-32. Epub 2004 Jun 16.

PMID:
15201441
37.
38.

Patterns of methamphetamine abuse and their consequences.

Cho AK, Melega WP.

J Addict Dis. 2002;21(1):21-34. Review.

PMID:
11831497
39.

Structural and spectroscopic analysis of the F393H mutant of flavocytochrome P450 BM3.

Ost TW, Munro AW, Mowat CG, Taylor PR, Pesseguiero A, Fulco AJ, Cho AK, Cheesman MA, Walkinshaw MD, Chapman SK.

Biochemistry. 2001 Nov 13;40(45):13430-8.

PMID:
11695889
40.

Inactivation of rat cytochrome P450 2D enzyme by a further metabolite of 4-hydroxypropranolol, the major and active metabolite of propranolol.

Narimatsu S, Arai T, Masubuchi Y, Horie T, Hosokawa M, Ueno K, Kataoka H, Yamamoto S, Ishikawa T, Cho AK.

Biol Pharm Bull. 2001 Sep;24(9):988-94.

41.

Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse.

Cho AK, Melega WP, Kuczenski R, Segal DS.

Synapse. 2001 Feb;39(2):161-6. Review.

PMID:
11180503
42.

Metabolism of drugs of abuse by cytochromes P450.

Cho AK, Narimatsu S, Kumagai Y.

Addict Biol. 1999 Jul;4(3):283-301. doi: 10.1080/13556219971498.

PMID:
20575795
43.

Caudate-putamen dopamine and stereotypy response profiles after intravenous and subcutaneous amphetamine.

Cho AK, Melega WP, Kuczenski R, Segal DS, Schmitz DA.

Synapse. 1999 Feb;31(2):125-33.

PMID:
10024009
44.

l-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived l-methamphetamine.

Melega WP, Cho AK, Schmitz D, Kuczenski R, Segal DS.

J Pharmacol Exp Ther. 1999 Feb;288(2):752-8.

PMID:
9918585
45.

Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6.

Lin LY, Di Stefano EW, Schmitz DA, Hsu L, Ellis SW, Lennard MS, Tucker GT, Cho AK.

Drug Metab Dispos. 1997 Sep;25(9):1059-64.

PMID:
9311621
46.

Extracellular dopamine and amphetamine after systemic amphetamine administration: comparison to the behavioral response.

Kuczenski R, Melega WP, Cho AK, Segal DS.

J Pharmacol Exp Ther. 1997 Aug;282(2):591-6.

PMID:
9262319
47.

Major role of the CYP2C isozymes in deamination of amphetamine and benzphetamine: evidence for the quinidine-specific inhibition of the reactions catalysed by rabbit enzyme.

Shiiyama S, Soejima-Ohkuma T, Honda S, Kumagai Y, Cho AK, Yamada H, Oguri K, Yoshimura H.

Xenobiotica. 1997 Apr;27(4):379-87.

PMID:
9149377
48.

Covalent binding of a reactive metabolite derived from propranolol and its active metabolite 4-hydroxypropranolol to hepatic microsomal proteins of the rat.

Narimatsu S, Arai T, Watanabe T, Masubuchi Y, Horie T, Suzuki T, Ishikawa T, Tsutsui M, Kumagai Y, Cho AK.

Chem Res Toxicol. 1997 Mar;10(3):289-95.

PMID:
9084908
49.

Deamination of amphetamines by cytochromes P450: studies on substrate specificity and regioselectivity with microsomes and purified CYP2C subfamily isozymes.

Yamada H, Shiiyama S, Soejima-Ohkuma T, Honda S, Kumagai Y, Cho AK, Oguri K, Yoshimura H.

J Toxicol Sci. 1997 Feb;22(1):65-73.

50.

Cytochrome P450 enzymes involved in the enhancement of propranolol N-desisopropylation after repeated administration of propranolol in rats.

Narimatsu S, Mochida M, Matsumoto T, Masubuchi Y, Horie T, Nagata K, Funae Y, Cho AK, Suzuki T.

Chem Biol Interact. 1996 Sep 6;101(3):207-24.

PMID:
8870689

Supplemental Content

Support Center