Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 99

1.

Synthetic Methane-Consuming Communities from a Natural Lake Sediment.

Yu Z, Groom J, Zheng Y, Chistoserdova L, Huang J.

MBio. 2019 Jul 23;10(4). pii: e01072-19. doi: 10.1128/mBio.01072-19.

2.

Systems Biology Meets Enzymology: Recent Insights into Communal Metabolism of Methane and the Role of Lanthanides.

Yu Z, Zheng Y, Huang J, Chistoserdova L.

Curr Issues Mol Biol. 2019 Jun 5;33:183-196. doi: 10.21775/cimb.033.183. [Epub ahead of print]

PMID:
31166192
3.

Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes.

Huang J, Yu Z, Groom J, Cheng JF, Tarver A, Yoshikuni Y, Chistoserdova L.

ISME J. 2019 Aug;13(8):2005-2017. doi: 10.1038/s41396-019-0414-z. Epub 2019 Apr 5.

PMID:
30952993
4.

New pieces to the lanthanide puzzle.

Chistoserdova L.

Mol Microbiol. 2019 May;111(5):1127-1131. doi: 10.1111/mmi.14210. Epub 2019 Mar 28.

PMID:
30673122
5.
6.

Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy.

Zheng Y, Huang J, Zhao F, Chistoserdova L.

MBio. 2018 Mar 27;9(2). pii: e02430-17. doi: 10.1128/mBio.02430-17.

7.

Current Trends in Methylotrophy.

Chistoserdova L, Kalyuzhnaya MG.

Trends Microbiol. 2018 Aug;26(8):703-714. doi: 10.1016/j.tim.2018.01.011. Epub 2018 Feb 19. Review.

PMID:
29471983
8.

Applications of methylotrophs: can single carbon be harnessed for biotechnology?

Chistoserdova L.

Curr Opin Biotechnol. 2018 Apr;50:189-194. doi: 10.1016/j.copbio.2018.01.012. Epub 2018 Feb 3. Review.

PMID:
29414059
10.

Application of Omics Approaches to Studying Methylotrophs and Methylotroph Comunities.

Chistoserdova L.

Curr Issues Mol Biol. 2017;24:119-142. doi: 10.21775/cimb.024.119. Epub 2017 Jul 6. Review.

PMID:
28686571
11.

Communal metabolism of methane and the rare Earth element switch.

Yu Z, Chistoserdova L.

J Bacteriol. 2017 Jun 19;199(22):e00328-17. doi: 10.1128/JB.00328-17. [Epub ahead of print]

12.

Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions.

Krause SM, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DA, Chistoserdova L, Lidstrom ME.

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):358-363. doi: 10.1073/pnas.1619871114. Epub 2016 Dec 27.

13.

Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea.

Chistoserdova L.

Front Microbiol. 2016 Sep 13;7:1425. doi: 10.3389/fmicb.2016.01425. eCollection 2016. No abstract available.

14.

A Synthetic Ecology Perspective: How Well Does Behavior of Model Organisms in the Laboratory Predict Microbial Activities in Natural Habitats?

Yu Z, Krause SM, Beck DA, Chistoserdova L.

Front Microbiol. 2016 Jun 15;7:946. doi: 10.3389/fmicb.2016.00946. eCollection 2016.

15.

Lanthanides: New life metals?

Chistoserdova L.

World J Microbiol Biotechnol. 2016 Aug;32(8):138. doi: 10.1007/s11274-016-2088-2. Epub 2016 Jun 29. Review.

PMID:
27357406
16.

Methylotrophs in natural habitats: current insights through metagenomics.

Chistoserdova L.

Appl Microbiol Biotechnol. 2015 Jul;99(14):5763-79. doi: 10.1007/s00253-015-6713-z. Epub 2015 Jun 9. Review.

PMID:
26051673
17.

Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

Kalyuzhnaya MG, Lamb AE, McTaggart TL, Oshkin IY, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Mar 12;3(2). pii: e00103-15. doi: 10.1128/genomeA.00103-15.

18.

Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation.

Hernandez ME, Beck DA, Lidstrom ME, Chistoserdova L.

PeerJ. 2015 Feb 24;3:e801. doi: 10.7717/peerj.801. eCollection 2015.

19.

Draft genomes of two strains of flavobacterium isolated from lake washington sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 19;3(1). pii: e01597-14. doi: 10.1128/genomeA.01597-14.

20.

Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 19;3(1). pii: e01587-14. doi: 10.1128/genomeA.01587-14.

21.

Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates.

Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Goodwin L, Shapiro N, Woyke T, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

Environ Microbiol. 2015 Mar;17(3):547-54. doi: 10.1111/1462-2920.12736. Epub 2015 Feb 11.

PMID:
25683159
22.

Draft Genome of Janthinobacterium sp. RA13 Isolated from Lake Washington Sediment.

McTaggart TL, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 12;3(1). pii: e01588-14. doi: 10.1128/genomeA.01588-14.

23.

Draft genome sequences of five new strains of methylophilaceae isolated from lake washington sediment.

McTaggart TL, Benuska G, Shapiro N, Woyke T, Chistoserdova L.

Genome Announc. 2015 Feb 5;3(1). pii: e01511-14. doi: 10.1128/genomeA.01511-14.

24.

Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria.

McTaggart TL, Beck DA, Setboonsarng U, Shapiro N, Woyke T, Lidstrom ME, Kalyuzhnaya MG, Chistoserdova L.

Microorganisms. 2015 Mar 20;3(1):94-112. doi: 10.3390/microorganisms3010094.

25.

Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response.

Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L.

ISME J. 2015 May;9(5):1119-29. doi: 10.1038/ismej.2014.203. Epub 2014 Oct 21.

26.

The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L.

PLoS One. 2014 Jul 24;9(7):e102458. doi: 10.1371/journal.pone.0102458. eCollection 2014.

27.

Is metagenomics resolving identification of functions in microbial communities?

Chistoserdova L.

Microb Biotechnol. 2014 Jan;7(1):1-4. doi: 10.1111/1751-7915.12077. Epub 2013 Aug 15.

28.

Comparative transcriptomics in three Methylophilaceae species uncover different strategies for environmental adaptation.

Vorobev A, Beck DA, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

PeerJ. 2013 Jul 25;1:e115. doi: 10.7717/peerj.115. Print 2013.

29.

A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae.

Beck DA, Kalyuzhnaya MG, Malfatti S, Tringe SG, Glavina Del Rio T, Ivanova N, Lidstrom ME, Chistoserdova L.

PeerJ. 2013 Feb 19;1:e23. doi: 10.7717/peerj.23. Print 2013.

30.

Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants.

Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

J Bacteriol. 2013 May;195(10):2207-11. doi: 10.1128/JB.00069-13. Epub 2013 Mar 8.

31.

Complete genome sequences of six strains of the genus Methylobacterium.

Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S.

J Bacteriol. 2012 Sep;194(17):4746-8. doi: 10.1128/JB.01009-12.

32.

An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis.

Beck DA, Hendrickson EL, Vorobev A, Wang T, Lim S, Kalyuzhnaya MG, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2011 Sep;193(18):4758-65. doi: 10.1128/JB.05375-11. Epub 2011 Jul 15.

33.

Methylotrophy in a lake: from metagenomics to single-organism physiology.

Chistoserdova L.

Appl Environ Microbiol. 2011 Jul;77(14):4705-11. doi: 10.1128/AEM.00314-11. Epub 2011 May 27. Review.

34.

Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae.

Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DA, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L.

J Bacteriol. 2011 Aug;193(15):3757-64. doi: 10.1128/JB.00404-11. Epub 2011 May 27.

35.

Comment on "A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico".

Joye SB, Leifer I, MacDonald IR, Chanton JP, Meile CD, Teske AP, Kostka JE, Chistoserdova L, Coffin R, Hollander D, Kastner M, Montoya JP, Rehder G, Solomon E, Treude T, Villareal TA.

Science. 2011 May 27;332(6033):1033; author reply 1033. doi: 10.1126/science.1203307.

36.

Modularity of methylotrophy, revisited.

Chistoserdova L.

Environ Microbiol. 2011 Oct;13(10):2603-22. doi: 10.1111/j.1462-2920.2011.02464.x. Epub 2011 Mar 28. Review.

PMID:
21443740
37.

Functional metagenomics of methylotrophs.

Kalyuzhnaya MG, Beck DA, Chistoserdova L.

Methods Enzymol. 2011;495:81-98. doi: 10.1016/B978-0-12-386905-0.00006-1.

PMID:
21419916
38.

Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera.

Kalyuzhnaya MG, Beck DA, Vorobev A, Smalley N, Kunkel DD, Lidstrom ME, Chistoserdova L.

Int J Syst Evol Microbiol. 2012 Jan;62(Pt 1):106-11. doi: 10.1099/ijs.0.029165-0. Epub 2011 Feb 18.

PMID:
21335496
39.

Respiration response imaging for real-time detection of microbial function at the single-cell level.

Konopka MC, Strovas TJ, Ojala DS, Chistoserdova L, Lidstrom ME, Kalyuzhnaya MG.

Appl Environ Microbiol. 2011 Jan;77(1):67-72. doi: 10.1128/AEM.01166-10. Epub 2010 Nov 12.

40.

Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy.

Hendrickson EL, Beck DA, Wang T, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2010 Oct;192(19):4859-67. doi: 10.1128/JB.00512-10. Epub 2010 Jul 16.

41.

Recent progress and new challenges in metagenomics for biotechnology.

Chistoserdova L.

Biotechnol Lett. 2010 Oct;32(10):1351-9. doi: 10.1007/s10529-010-0306-9. Epub 2010 May 21. Review.

PMID:
20495950
42.

Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.

Okubo Y, Yang S, Chistoserdova L, Lidstrom ME.

J Bacteriol. 2010 Apr;192(7):1813-23. doi: 10.1128/JB.01166-09. Epub 2010 Jan 29.

43.

Functioning in situ: gene expression in Methylotenera mobilis in its native environment as assessed through transcriptomics.

Kalyuzhnaya MG, Beck DA, Suciu D, Pozhitkov A, Lidstrom ME, Chistoserdova L.

ISME J. 2010 Mar;4(3):388-98. doi: 10.1038/ismej.2009.117. Epub 2009 Nov 19.

PMID:
19924155
44.

Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis.

Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L.

Environ Microbiol Rep. 2009 Oct;1(5):385-92. doi: 10.1111/j.1758-2229.2009.00046.x. Epub 2009 Jul 16.

PMID:
23765891
45.

The expanding world of methylotrophic metabolism.

Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME.

Annu Rev Microbiol. 2009;63:477-99. doi: 10.1146/annurev.micro.091208.073600. Review.

46.

Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.

Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME.

PLoS One. 2009;4(5):e5584. doi: 10.1371/journal.pone.0005584. Epub 2009 May 18.

47.

Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis.

Bosch G, Wang T, Latypova E, Kalyuzhnaya MG, Hackett M, Chistoserdova L.

Microbiology. 2009 Apr;155(Pt 4):1103-10. doi: 10.1099/mic.0.024968-0.

PMID:
19332812
48.

High-resolution metagenomics targets specific functional types in complex microbial communities.

Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L.

Nat Biotechnol. 2008 Sep;26(9):1029-34. doi: 10.1038/nbt.1488.

PMID:
18711340
49.

Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington.

Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.

ISME J. 2008 Jul;2(7):696-706. doi: 10.1038/ismej.2008.32. Epub 2008 Mar 27.

PMID:
18607374
50.

Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution.

Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L.

J Bacteriol. 2008 Jun;190(11):3817-23. doi: 10.1128/JB.00180-08. Epub 2008 Apr 4.

Supplemental Content

Loading ...
Support Center