Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship.

Frostig RD, Chen-Bee CH, Johnson BA, Jacobs NS.

Neurophotonics. 2017 Jul;4(3):031217. doi: 10.1117/1.NPh.4.3.031217. Epub 2017 Jun 12. Review.

2.

Visualizing Adult Cortical Plasticity Using Intrinsic Signal Optical Imaging.

Frostig RD, Chen-Bee CH.

In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 9.

3.

Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex.

Jacobs NS, Chen-Bee CH, Frostig RD.

Front Neural Circuits. 2015 Jul 8;9:34. doi: 10.3389/fncir.2015.00034. eCollection 2015.

4.

Whisker array functional representation in rat barrel cortex: transcendence of one-to-one topography and its underlying mechanism.

Chen-Bee CH, Zhou Y, Jacobs NS, Lim B, Frostig RD.

Front Neural Circuits. 2012 Nov 27;6:93. doi: 10.3389/fncir.2012.00093. eCollection 2012.

5.

Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion.

Lay CC, Davis MF, Chen-Bee CH, Frostig RD.

J Am Heart Assoc. 2012 Aug;1(4):e001255. doi: 10.1161/JAHA.112.001255. Epub 2012 Aug 24.

6.

Mild sensory stimulation reestablishes cortical function during the acute phase of ischemia.

Lay CC, Davis MF, Chen-Bee CH, Frostig RD.

J Neurosci. 2011 Aug 10;31(32):11495-504. doi: 10.1523/JNEUROSCI.1741-11.2011.

7.

Amount but not pattern of protective sensory stimulation alters recovery after permanent middle cerebral artery occlusion.

Davis MF, Lay CC, Chen-Bee CH, Frostig RD.

Stroke. 2011 Mar;42(3):792-8. doi: 10.1161/STROKEAHA.110.607135. Epub 2011 Feb 11.

8.

Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke.

Lay CC, Davis MF, Chen-Bee CH, Frostig RD.

PLoS One. 2010 Jun 23;5(6):e11270. doi: 10.1371/journal.pone.0011270.

9.

Intrinsic signal optical imaging of brain function using short stimulus delivery intervals.

Chen-Bee CH, Agoncillo T, Lay CC, Frostig RD.

J Neurosci Methods. 2010 Mar 30;187(2):171-82. doi: 10.1016/j.jneumeth.2010.01.009. Epub 2010 Jan 14.

10.

Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads.

Frostig RD, Xiong Y, Chen-Bee CH, Kvasnák E, Stehberg J.

J Neurosci. 2008 Dec 3;28(49):13274-84. doi: 10.1523/JNEUROSCI.4074-08.2008.

11.

The triphasic intrinsic signal: implications for functional imaging.

Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD.

J Neurosci. 2007 Apr 25;27(17):4572-86.

12.

In vivo modulation of a cortical functional sensory representation shortly after topical cholinergic agent application.

Penschuck S, Chen-Bee CH, Prakash N, Frostig RD.

J Comp Neurol. 2002 Oct 7;452(1):38-50.

PMID:
12205708
13.

Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex.

Brett-Green BA, Chen-Bee CH, Frostig RD.

J Neurosci. 2001 Dec 15;21(24):9944-54.

14.

Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging.

Chen-Bee CH, Polley DB, Brett-Green B, Prakash N, Kwon MC, Frostig RD.

J Neurosci Methods. 2000 Apr 15;97(2):157-73.

PMID:
10788670
15.

Two directions of plasticity in the sensory-deprived adult cortex.

Polley DB, Chen-Bee CH, Frostig RD.

Neuron. 1999 Nov;24(3):623-37.

16.
17.

Areal extent quantification of functional representations using intrinsic signal optical imaging.

Chen-Bee CH, Kwon MC, Masino SA, Frostig RD.

J Neurosci Methods. 1996 Sep;68(1):27-37.

PMID:
8884610
18.

Supplemental Content

Loading ...
Support Center