Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 294

1.

Orthogonal Genetic Systems.

Chaput JC, Herdewijn P, Hollenstein M.

Chembiochem. 2019 Dec 30. doi: 10.1002/cbic.201900725. [Epub ahead of print]

PMID:
31889390
2.

Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme.

Wang Y, Vorperian A, Shehabat M, Chaput JC.

Chembiochem. 2019 Nov 3. doi: 10.1002/cbic.201900596. [Epub ahead of print]

PMID:
31680396
3.

P(V) Reagents for the Scalable Synthesis of Natural and Modified Nucleoside Triphosphates.

Liao JY, Bala S, Ngor AK, Yik EJ, Chaput JC.

J Am Chem Soc. 2019 Aug 28;141(34):13286-13289. doi: 10.1021/jacs.9b04728. Epub 2019 Aug 13.

PMID:
31298849
4.

What Is XNA?

Chaput JC, Herdewijn P.

Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11570-11572. doi: 10.1002/anie.201905999. Epub 2019 Jul 19.

PMID:
31210402
5.

Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase.

Jackson LN, Chim N, Shi C, Chaput JC.

Nucleic Acids Res. 2019 Jul 26;47(13):6973-6983. doi: 10.1093/nar/gkz513.

6.

A Novel Small RNA-Cleaving Deoxyribozyme with a Short Binding Arm.

Wang Y, Yang J, Yuan X, Cao J, Xu J, Chaput JC, Li Z, Yu H.

Sci Rep. 2019 Jun 3;9(1):8224. doi: 10.1038/s41598-019-44750-x.

7.

Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.

Vallejo D, Nikoomanzar A, Paegel BM, Chaput JC.

ACS Synth Biol. 2019 Jun 21;8(6):1430-1440. doi: 10.1021/acssynbio.9b00103. Epub 2019 May 23.

PMID:
31120731
8.

Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning.

Nikoomanzar A, Vallejo D, Chaput JC.

ACS Synth Biol. 2019 Jun 21;8(6):1421-1429. doi: 10.1021/acssynbio.9b00104. Epub 2019 May 13.

PMID:
31081325
9.

RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.

Horning DP, Bala S, Chaput JC, Joyce GF.

ACS Synth Biol. 2019 May 17;8(5):955-961. doi: 10.1021/acssynbio.9b00044. Epub 2019 May 3.

PMID:
31042360
10.

Ligase-Mediated Threose Nucleic Acid Synthesis on DNA Templates.

McCloskey CM, Liao JY, Bala S, Chaput JC.

ACS Synth Biol. 2019 Feb 15;8(2):282-286. doi: 10.1021/acssynbio.8b00511. Epub 2019 Jan 14.

PMID:
30629885
11.

Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid.

Lange MJ, Burke DH, Chaput JC.

Nucleic Acid Ther. 2019 Feb;29(1):51-59. doi: 10.1089/nat.2018.0751. Epub 2018 Dec 11.

12.

Evolution of a General RNA-Cleaving FANA Enzyme.

Wang Y, Ngor AK, Nikoomanzar A, Chaput JC.

Nat Commun. 2018 Nov 29;9(1):5067. doi: 10.1038/s41467-018-07611-1.

13.

Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements.

Juba AN, Chaput JC, Wellensiek BP.

Biochemistry. 2018 Nov 6;57(44):6308-6318. doi: 10.1021/acs.biochem.8b00785. Epub 2018 Oct 29.

14.

Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway.

Chim N, Jackson LN, Trinh AM, Chaput JC.

Elife. 2018 Oct 19;7. pii: e40444. doi: 10.7554/eLife.40444.

15.

Bacterial Genome Containing Chimeric DNA-RNA Sequences.

Mehta AP, Wang Y, Reed SA, Supekova L, Javahishvili T, Chaput JC, Schultz PG.

J Am Chem Soc. 2018 Sep 12;140(36):11464-11473. doi: 10.1021/jacs.8b07046. Epub 2018 Aug 30.

PMID:
30160955
16.

Synthesis of 2'-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates.

Bala S, Liao JY, Zhang L, Tran CN, Chim N, Chaput JC.

J Org Chem. 2018 Aug 17;83(16):8840-8850. doi: 10.1021/acs.joc.8b00875. Epub 2018 Jul 27.

PMID:
30011988
17.

Visualizing primer extension without enzymes.

Chaput JC.

Elife. 2018 May 31;7. pii: e37926. doi: 10.7554/eLife.37926.

18.

Synthesis and Evolution of a Threose Nucleic Acid Aptamer Bearing 7-Deaza-7-Substituted Guanosine Residues.

Mei H, Liao JY, Jimenez RM, Wang Y, Bala S, McCloskey C, Switzer C, Chaput JC.

J Am Chem Soc. 2018 May 2;140(17):5706-5713. doi: 10.1021/jacs.7b13031. Epub 2018 Apr 23.

PMID:
29667819
19.

Made in translation.

Chaput JC.

Nat Chem. 2018 Apr;10(4):379-381. doi: 10.1038/s41557-018-0034-7. No abstract available.

PMID:
29568049
20.

Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase.

Mei H, Chaput JC.

Chem Commun (Camb). 2018 Jan 31;54(10):1237-1240. doi: 10.1039/c7cc09130c.

PMID:
29340357
21.

A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria.

Feldman AW, Fischer EC, Ledbetter MP, Liao JY, Chaput JC, Romesberg FE.

J Am Chem Soc. 2018 Jan 31;140(4):1447-1454. doi: 10.1021/jacs.7b11404. Epub 2018 Jan 17.

22.

Structural basis for TNA synthesis by an engineered TNA polymerase.

Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC.

Nat Commun. 2017 Nov 27;8(1):1810. doi: 10.1038/s41467-017-02014-0.

23.

Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.

Nikoomanzar A, Dunn MR, Chaput JC.

Anal Chem. 2017 Dec 5;89(23):12622-12625. doi: 10.1021/acs.analchem.7b03807. Epub 2017 Nov 21.

PMID:
29148714
24.

A Gram-Scale HPLC-Free Synthesis of TNA Triphosphates Using an Iterative Phosphorylation Strategy.

Sau SP, Chaput JC.

Org Lett. 2017 Aug 18;19(16):4379-4382. doi: 10.1021/acs.orglett.7b02099. Epub 2017 Aug 2.

PMID:
28766949
25.

Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.

Nikoomanzar A, Dunn MR, Chaput JC.

Curr Protoc Nucleic Acid Chem. 2017 Jun 19;69:4.75.1-4.75.20. doi: 10.1002/cpnc.33.

PMID:
28628207
26.

Synthesis of α-l-Threofuranosyl Nucleoside 3'-Monophosphates, 3'-Phosphoro(2-Methyl)imidazolides, and 3'-Triphosphates.

Bala S, Liao JY, Mei H, Chaput JC.

J Org Chem. 2017 Jun 2;82(11):5910-5916. doi: 10.1021/acs.joc.7b00892. Epub 2017 May 19.

PMID:
28490177
27.

Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.

Mei H, Shi C, Jimenez RM, Wang Y, Kardouh M, Chaput JC.

Nucleic Acids Res. 2017 Jun 2;45(10):5629-5638. doi: 10.1093/nar/gkx368.

28.

A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).

Liao JY, Anosova I, Bala S, Van Horn WD, Chaput JC.

Biopolymers. 2017 Mar;107(3). doi: 10.1002/bip.22999.

PMID:
27718227
29.

Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.

Dunn MR, Chaput JC.

Chembiochem. 2016 Oct 4;17(19):1804-1808. doi: 10.1002/cbic.201600338. Epub 2016 Aug 4.

PMID:
27383648
30.

Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes.

Anosova I, Kowal EA, Sisco NJ, Sau S, Liao JY, Bala S, Rozners E, Egli M, Chaput JC, Van Horn WD.

Chembiochem. 2016 Sep 15;17(18):1705-8. doi: 10.1002/cbic.201600349. Epub 2016 Jul 29.

31.

A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).

Sau SP, Chaput JC.

Bioorg Med Chem Lett. 2016 Jul 15;26(14):3271-3273. doi: 10.1016/j.bmcl.2016.05.057. Epub 2016 May 20.

PMID:
27246616
32.

Evaluating TNA stability under simulated physiological conditions.

Culbertson MC, Temburnikar KW, Sau SP, Liao JY, Bala S, Chaput JC.

Bioorg Med Chem Lett. 2016 May 15;26(10):2418-2421. doi: 10.1016/j.bmcl.2016.03.118. Epub 2016 Apr 1.

PMID:
27080186
33.

A general strategy for expanding polymerase function by droplet microfluidics.

Larsen AC, Dunn MR, Hatch A, Sau SP, Youngbull C, Chaput JC.

Nat Commun. 2016 Apr 5;7:11235. doi: 10.1038/ncomms11235.

34.

A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.

Sau SP, Fahmi NE, Liao JY, Bala S, Chaput JC.

J Org Chem. 2016 Mar 18;81(6):2302-7. doi: 10.1021/acs.joc.5b02768. Epub 2016 Feb 26.

PMID:
26895480
35.

Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.

Dunn MR, Otto C, Fenton KE, Chaput JC.

ACS Chem Biol. 2016 May 20;11(5):1210-9. doi: 10.1021/acschembio.5b00949. Epub 2016 Feb 17.

PMID:
26860781
36.

The structural diversity of artificial genetic polymers.

Anosova I, Kowal EA, Dunn MR, Chaput JC, Van Horn WD, Egli M.

Nucleic Acids Res. 2016 Feb 18;44(3):1007-21. doi: 10.1093/nar/gkv1472. Epub 2015 Dec 15. Review.

37.

DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.

Dunn MR, Larsen AC, Zahurancik WJ, Fahmi NE, Meyers M, Suo Z, Chaput JC.

J Am Chem Soc. 2015 Apr 1;137(12):4014-7. doi: 10.1021/ja511481n. Epub 2015 Mar 20.

PMID:
25785966
38.

Automated solid-phase synthesis of high capacity oligo-dT cellulose for affinity purification of poly-A tagged biomolecules.

Sau SP, Larsen AC, Chaput JC.

Bioorg Med Chem Lett. 2014 Dec 15;24(24):5692-5694. doi: 10.1016/j.bmcl.2014.10.065. Epub 2014 Oct 27.

PMID:
25467163
39.

Replicating an expanded genetic alphabet in cells.

Chaput JC.

Chembiochem. 2014 Sep 5;15(13):1869-71. doi: 10.1002/cbic.201402289. Epub 2014 Jul 18.

PMID:
25044483
40.

General approach for characterizing in vitro selected peptides with protein binding affinity.

Larsen AC, Gillig A, Shah P, Sau SP, Fenton KE, Chaput JC.

Anal Chem. 2014 Aug 5;86(15):7219-23. doi: 10.1021/ac501614d. Epub 2014 Jul 14.

41.

An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.

Dunn MR, Chaput JC.

Curr Protoc Nucleic Acid Chem. 2014 Jun 24;57:9.8.1-19. doi: 10.1002/0471142700.nc0908s57. Review.

PMID:
24961723
42.

Comparative analysis of eukaryotic cell-free expression systems.

Hartsough EM, Shah P, Larsen AC, Chaput JC.

Biotechniques. 2015 Sep 1;59(3):149-51. doi: 10.2144/000114327. eCollection 2015 Sep.

43.

A leader sequence capable of enhancing RNA expression and protein synthesis in mammalian cells.

Wellensiek BP, Larsen AC, Flores J, Jacobs BL, Chaput JC.

Protein Sci. 2013 Oct;22(10):1392-8. doi: 10.1002/pro.2325. Epub 2013 Sep 4.

44.

Genome-wide profiling of human cap-independent translation-enhancing elements.

Wellensiek BP, Larsen AC, Stephens B, Kukurba K, Waern K, Briones N, Liu L, Snyder M, Jacobs BL, Kumar S, Chaput JC.

Nat Methods. 2013 Aug;10(8):747-50. doi: 10.1038/nmeth.2522. Epub 2013 Jun 16.

45.

Synthesis of threose nucleic acid (TNA) triphosphates and oligonucleotides by polymerase-mediated primer extension.

Zhang S, Yu H, Chaput JC.

Curr Protoc Nucleic Acid Chem. 2013 Mar;Chapter 4:Unit 4.54. doi: 10.1002/0471142700.nc0454s52.

PMID:
23512696
46.

An efficient and faithful in vitro replication system for threose nucleic acid.

Yu H, Zhang S, Dunn MR, Chaput JC.

J Am Chem Soc. 2013 Mar 6;135(9):3583-91. doi: 10.1021/ja3118703. Epub 2013 Feb 25.

PMID:
23432469
47.

Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

Zhang S, Chaput JC.

Bioorg Med Chem Lett. 2013 Mar 1;23(5):1447-9. doi: 10.1016/j.bmcl.2012.12.080. Epub 2013 Jan 5.

PMID:
23352269
48.

ATP sequestration by a synthetic ATP-binding protein leads to novel phenotypic changes in Escherichia coli.

Korch SB, Stomel JM, León MA, Hamada MA, Stevenson CR, Simpson BW, Gujulla SK, Chaput JC.

ACS Chem Biol. 2013 Feb 15;8(2):451-63. doi: 10.1021/cb3004786. Epub 2012 Dec 3.

PMID:
23181457
49.

The emerging world of synthetic genetics.

Chaput JC, Yu H, Zhang S.

Chem Biol. 2012 Nov 21;19(11):1360-71. doi: 10.1016/j.chembiol.2012.10.011. Review.

50.

Synthesis of threose nucleic acid (TNA) phosphoramidite monomers and oligonucleotide polymers.

Zhang S, Chaput JC.

Curr Protoc Nucleic Acid Chem. 2012 Sep;Chapter 4:Unit4.51. doi: 10.1002/0471142700.nc0451s50.

PMID:
22956457

Supplemental Content

Loading ...
Support Center