Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Working to Have a Normal Life With Cystic Fibrosis in an Adherence-Driven Health Care System.

Macdonald M, Lang A, Savage E, Chappe V, Murphy A, Gosse F, MacLean H.

Respir Care. 2019 Aug;64(8):945-952. doi: 10.4187/respcare.06493. Epub 2019 May 28.

PMID:
31138735
2.

Animal Models in the Pathophysiology of Cystic Fibrosis.

Semaniakou A, Croll RP, Chappe V.

Front Pharmacol. 2019 Jan 4;9:1475. doi: 10.3389/fphar.2018.01475. eCollection 2018. Review.

3.

Iron chelation as novel treatment for lung inflammation in cystic fibrosis.

Aali M, Caldwell A, House K, Zhou J, Chappe V, Lehmann C.

Med Hypotheses. 2017 Jul;104:86-88. doi: 10.1016/j.mehy.2017.05.029. Epub 2017 May 27.

PMID:
28673599
4.

Modeling cystic fibrosis disease progression in patients with the rare CFTR mutation P67L.

MacKenzie IER, Paquette V, Gosse F, George S, Chappe F, Chappe V.

J Cyst Fibros. 2017 May;16(3):335-341. doi: 10.1016/j.jcf.2017.03.008. Epub 2017 Apr 5.

5.

ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies.

Poroca DR, Pelis RM, Chappe VM.

Front Pharmacol. 2017 Mar 23;8:151. doi: 10.3389/fphar.2017.00151. eCollection 2017. Review.

6.

The role of ghrelin in the regulation of glucose homeostasis.

Alamri BN, Shin K, Chappe V, Anini Y.

Horm Mol Biol Clin Investig. 2016 Apr 1;26(1):3-11. doi: 10.1515/hmbci-2016-0018. Review.

7.

Cystic fibrosis transmembrane conductance regulator dysfunction in VIP knockout mice.

Alcolado NG, Conrad DJ, Poroca D, Li M, Alshafie W, Chappe FG, Pelis RM, Anini Y, Xu Z, Hamidi S, Said SI, Chappe VM.

Am J Physiol Cell Physiol. 2014 Jul 15;307(2):C195-207. doi: 10.1152/ajpcell.00293.2013. Epub 2014 Jun 4.

8.

VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner.

Alshafie W, Chappe FG, Li M, Anini Y, Chappe VM.

Am J Physiol Cell Physiol. 2014 Jul 1;307(1):C107-19. doi: 10.1152/ajpcell.00296.2013. Epub 2014 Apr 30.

9.

VIP-dependent increase in F508del-CFTR membrane localization is mediated by PKCε.

Alcolado N, Conrad DJ, Rafferty S, Chappe FG, Chappe VM.

Am J Physiol Cell Physiol. 2011 Jul;301(1):C53-65. doi: 10.1152/ajpcell.00568.2009. Epub 2011 Mar 16.

10.

Rescue of functional F508del cystic fibrosis transmembrane conductance regulator by vasoactive intestinal peptide in the human nasal epithelial cell line JME/CF15.

Rafferty S, Alcolado N, Norez C, Chappe F, Pelzer S, Becq F, Chappe V.

J Pharmacol Exp Ther. 2009 Oct;331(1):2-13. doi: 10.1124/jpet.109.155341. Epub 2009 Jul 7.

PMID:
19584307
11.

PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR.

Seavilleklein G, Amer N, Evagelidis A, Chappe F, Irvine T, Hanrahan JW, Chappe V.

Am J Physiol Cell Physiol. 2008 Nov;295(5):C1366-75. doi: 10.1152/ajpcell.00034.2008. Epub 2008 Sep 17.

12.

Vasoactive intestinal peptide increases cystic fibrosis transmembrane conductance regulator levels in the apical membrane of Calu-3 cells through a protein kinase C-dependent mechanism.

Chappe F, Loewen ME, Hanrahan JW, Chappe V.

J Pharmacol Exp Ther. 2008 Oct;327(1):226-38. doi: 10.1124/jpet.108.141143. Epub 2008 Jul 23.

PMID:
18650246
13.

Phosphorylation of CFTR by PKA promotes binding of the regulatory domain.

Chappe V, Irvine T, Liao J, Evagelidis A, Hanrahan JW.

EMBO J. 2005 Aug 3;24(15):2730-40. Epub 2005 Jul 7.

14.
15.

Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator.

Chappe V, Hinkson DA, Howell LD, Evagelidis A, Liao J, Chang XB, Riordan JR, Hanrahan JW.

Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):390-5. Epub 2003 Dec 26.

16.

Negative regulation of CFTR activity by extracellular ATP involves P2Y2 receptors in CFTR-expressing CHO cells.

Marcet B, Chappe V, Delmas P, Gola M, Verrier B.

J Membr Biol. 2003 Jul 1;194(1):21-32.

PMID:
14502440
17.

Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA.

Chappe V, Hinkson DA, Zhu T, Chang XB, Riordan JR, Hanrahan JW.

J Physiol. 2003 Apr 1;548(Pt 1):39-52. Epub 2003 Feb 14.

18.

Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel.

Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M, Métayé T, Chappe V, Marvingt-Mounir C, Zegarra-Moran O, Tarran R, Bulteau L, Dérand R, Pereira MM, McPherson MA, Rogier C, Joffre M, Argent BE, Sarrouilhe D, Kammouni W, Figarella C, Verrier B, Gola M, Vierfond JM.

J Biol Chem. 1999 Sep 24;274(39):27415-25.

19.

Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.

Julien M, Verrier B, Cerutti M, Chappe V, Gola M, Devauchelle G, Becq F.

J Membr Biol. 1999 Apr 1;168(3):229-39.

PMID:
10191357
20.

Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel.

Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, Becq F.

Br J Pharmacol. 1998 Feb;123(4):683-93.

Supplemental Content

Loading ...
Support Center