Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 119

1.

Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication?

Aziz M, Chapman KD.

Trends Plant Sci. 2020 Jan 7. pii: S1360-1385(19)30302-4. doi: 10.1016/j.tplants.2019.11.002. [Epub ahead of print] Review.

PMID:
31919033
2.

Nature-Guided Synthesis of Advanced Bio-Lubricants.

Romsdahl T, Shirani A, Minto RE, Zhang C, Cahoon EB, Chapman KD, Berman D.

Sci Rep. 2019 Aug 12;9(1):11711. doi: 10.1038/s41598-019-48165-6.

3.

Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion.

Price AM, Doner NM, Gidda SK, Jambunathan S, James CN, Schami A, Yurchenko O, Mullen RT, Dyer JM, Puri V, Chapman KD.

Biochimie. 2019 Aug 7. pii: S0300-9084(19)30234-2. doi: 10.1016/j.biochi.2019.08.002. [Epub ahead of print]

PMID:
31400447
4.

Mechanisms of lipid droplet biogenesis.

Chapman KD, Aziz M, Dyer JM, Mullen RT.

Biochem J. 2019 Jul 9;476(13):1929-1942. doi: 10.1042/BCJ20180021. Review.

PMID:
31289128
5.

iCURE (iterative course-based undergraduate research experience): A case-study.

Stoeckman AK, Cai Y, Chapman KD.

Biochem Mol Biol Educ. 2019 Sep;47(5):565-572. doi: 10.1002/bmb.21279. Epub 2019 Jul 1.

PMID:
31260178
6.

Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells.

Cai Y, Whitehead P, Chappell J, Chapman KD.

Planta. 2019 Jul;250(1):79-94. doi: 10.1007/s00425-019-03148-9. Epub 2019 Mar 27.

PMID:
30919065
7.

Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides.

Aziz M, Wang X, Tripathi A, Bankaitis VA, Chapman KD.

J Biol Chem. 2019 May 3;294(18):7419-7432. doi: 10.1074/jbc.RA118.006672. Epub 2019 Mar 20.

PMID:
30894416
8.

Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds.

Sturtevant D, Romsdahl TB, Yu XH, Burks DJ, Azad RK, Shanklin J, Chapman KD.

Metabolomics. 2019 Jan 3;15(1):6. doi: 10.1007/s11306-018-1464-3.

PMID:
30830477
9.

Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function.

Li X, Teitgen AM, Shirani A, Ling J, Busta L, Cahoon RE, Zhang W, Li Z, Chapman KD, Berman D, Zhang C, Minto RE, Cahoon EB.

Nat Plants. 2018 Sep;4(9):711-720. doi: 10.1038/s41477-018-0225-7. Epub 2018 Aug 27.

PMID:
30150614
10.

Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.

Lu S, Sturtevant D, Aziz M, Jin C, Li Q, Chapman KD, Guo L.

Plant J. 2018 Jun;94(6):915-932. doi: 10.1111/tpj.13959.

11.

Response of high leaf-oil Arabidopsis thaliana plant lines to biotic or abiotic stress.

Yurchenko O, Kimberlin A, Mehling M, Koo AJ, Chapman KD, Mullen RT, Dyer JM.

Plant Signal Behav. 2018;13(5):e1464361. doi: 10.1080/15592324.2018.1464361. Epub 2018 Jun 4.

12.

Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds.

Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT.

Plant J. 2017 Dec;92(6):1182-1201. doi: 10.1111/tpj.13754. Epub 2017 Nov 27.

13.

Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.

Yu XH, Cahoon RE, Horn PJ, Shi H, Prakash RR, Cai Y, Hearney M, Chapman KD, Cahoon EB, Schwender J, Shanklin J.

Plant Biotechnol J. 2018 Apr;16(4):926-938. doi: 10.1111/pbi.12839. Epub 2018 Jan 18.

14.

Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa.

Usher S, Han L, Haslam RP, Michaelson LV, Sturtevant D, Aziz M, Chapman KD, Sayanova O, Napier JA.

Sci Rep. 2017 Jul 26;7(1):6570. doi: 10.1038/s41598-017-06838-0.

15.

Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

Price ER, Sirsat TS, Sirsat SKG, Kang G, Keereetaweep J, Aziz M, Chapman KD, Dzialowski EM.

J Therm Biol. 2017 Aug;68(Pt A):45-54. doi: 10.1016/j.jtherbio.2016.06.016. Epub 2016 Jun 29.

PMID:
28689720
16.

Derivation and Validation of a Prognostic Model to Predict 6-Month Mortality in an Intensive Care Unit Population.

Hadique S, Culp S, Sangani RG, Chapman KD, Khan S, Parker JE, Moss AH.

Ann Am Thorac Soc. 2017 Oct;14(10):1556-1561. doi: 10.1513/AnnalsATS.201702-159OC.

PMID:
28598196
17.

MALDI-MS Imaging of Urushiols in Poison Ivy Stem.

Aziz M, Sturtevant D, Winston J, Collakova E, Jelesko JG, Chapman KD.

Molecules. 2017 Apr 29;22(5). pii: E711. doi: 10.3390/molecules22050711.

18.

Turning Over a New Leaf in Lipid Droplet Biology.

Pyc M, Cai Y, Greer MS, Yurchenko O, Chapman KD, Dyer JM, Mullen RT.

Trends Plant Sci. 2017 Jul;22(7):596-609. doi: 10.1016/j.tplants.2017.03.012. Epub 2017 Apr 25. Review.

PMID:
28454678
19.

Plant lipidomics at the crossroads: From technology to biology driven science.

Shulaev V, Chapman KD.

Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Aug;1862(8):786-791. doi: 10.1016/j.bbalip.2017.02.011. Epub 2017 Feb 24. Review.

PMID:
28238862
20.
21.

Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves.

Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM.

Plant Biotechnol J. 2017 Aug;15(8):1010-1023. doi: 10.1111/pbi.12695. Epub 2017 Mar 15.

22.

Development and application of sub-2-μm particle CO2 -based chromatography coupled to mass spectrometry for comprehensive analysis of lipids in cottonseed extracts.

Salazar C, Jones MD, Sturtevant D, Horn PJ, Crossley J, Zaman K, Chapman KD, Wrona M, Isaac G, Smith NW, Shulaev V.

Rapid Commun Mass Spectrom. 2017 Apr 15;31(7):591-605. doi: 10.1002/rcm.7825.

PMID:
28072489
23.

Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.

Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD.

Plant Biotechnol J. 2017 Jul;15(7):824-836. doi: 10.1111/pbi.12678. Epub 2017 Jan 18.

24.

Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity.

Sturtevant D, Dueñas ME, Lee YJ, Chapman KD.

Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Feb;1862(2):268-281. doi: 10.1016/j.bbalip.2016.11.012. Epub 2016 Dec 3.

PMID:
27919665
25.

Malonylation of Glucosylated N-Lauroylethanolamine: A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS.

Khan BR, Wherritt DJ, Huhman D, Sumner LW, Chapman KD, Blancaflor EB.

J Biol Chem. 2016 Dec 30;291(53):27112-27121. doi: 10.1074/jbc.M116.751065. Epub 2016 Nov 17.

26.

Changes in Retinal N-Acylethanolamines and their Oxylipin Derivatives During the Development of Visual Impairment in a Mouse Model for Glaucoma.

Montgomery CL, Keereetaweep J, Johnson HM, Grillo SL, Chapman KD, Koulen P.

Lipids. 2016 Jul;51(7):857-66. doi: 10.1007/s11745-016-4161-x. Epub 2016 May 24.

27.

Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.

Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT.

Plant Physiol. 2016 Apr;170(4):2052-71. doi: 10.1104/pp.15.01977. Epub 2016 Feb 19.

28.

Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification.

Keereetaweep J, Chapman KD.

Neural Plast. 2016;2016:2426398. doi: 10.1155/2016/2426398. Epub 2015 Dec 29. Review.

29.

Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ.

Sturtevant D, Lee YJ, Chapman KD.

Curr Opin Biotechnol. 2016 Feb;37:53-60. doi: 10.1016/j.copbio.2015.10.004. Epub 2015 Nov 22. Review.

PMID:
26613199
30.

Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation.

Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, Chapman KD.

Plant Cell. 2015 Sep;27(9):2616-36. doi: 10.1105/tpc.15.00588. Epub 2015 Sep 11.

31.

Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

Liu F, Zhao Q, Mano N, Ahmed Z, Nitschke F, Cai Y, Chapman KD, Steup M, Tetlow IJ, Emes MJ.

Plant Biotechnol J. 2016 Mar;14(3):976-85. doi: 10.1111/pbi.12453. Epub 2015 Aug 19.

32.

Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles.

Phelps MS, Sturtevant D, Chapman KD, Verbeck GF.

J Am Soc Mass Spectrom. 2016 Feb;27(2):187-93. doi: 10.1007/s13361-015-1232-9. Epub 2015 Aug 4.

PMID:
26238327
33.

Lipoxygenase-derived 9-hydro(pero)xides of linoleoylethanolamide interact with ABA signaling to arrest root development during Arabidopsis seedling establishment.

Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD.

Plant J. 2015 Apr;82(2):315-27. doi: 10.1111/tpj.12821.

34.

Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development.

Faure L, Cavazos R, Khan BR, Petros RA, Koulen P, Blancaflor EB, Chapman KD.

Phytochemistry. 2015 Feb;110:58-71. doi: 10.1016/j.phytochem.2014.11.011. Epub 2014 Dec 6.

PMID:
25491532
35.

Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium.

Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM.

BMC Plant Biol. 2014 Nov 18;14:312. doi: 10.1186/s12870-014-0312-5.

36.

Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.

Hall TD, Chastain DR, Horn PJ, Chapman KD, Choinski JS Jr.

J Plant Physiol. 2014 Mar 15;171(6):411-20. doi: 10.1016/j.jplph.2013.12.005. Epub 2014 Feb 14.

PMID:
24594393
37.

Synthesis of phenoxyacyl-ethanolamides and their effects on fatty acid amide hydrolase activity.

Faure L, Nagarajan S, Hwang H, Montgomery CL, Khan BR, John G, Koulen P, Blancaflor EB, Chapman KD.

J Biol Chem. 2014 Mar 28;289(13):9340-51. doi: 10.1074/jbc.M113.533315. Epub 2014 Feb 20.

38.

CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism.

Park S, Keereetaweep J, James CN, Gidda SK, Chapman KD, Mullen RT, Dyer JM.

Plant Signal Behav. 2014;9(2):e27723. Epub 2014 Feb 3.

39.

Lipidomics in situ: insights into plant lipid metabolism from high resolution spatial maps of metabolites.

Horn PJ, Chapman KD.

Prog Lipid Res. 2014 Apr;54:32-52. doi: 10.1016/j.plipres.2014.01.003. Epub 2014 Jan 27. Review.

PMID:
24480404
40.

N-Acylethanolamines: lipid metabolites with functions in plant growth and development.

Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD.

Plant J. 2014 Aug;79(4):568-83. doi: 10.1111/tpj.12427. Epub 2014 Feb 25. Review.

41.

Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.

Gidda SK, Watt S, Collins-Silva J, Kilaru A, Arondel V, Yurchenko O, Horn PJ, James CN, Shintani D, Ohlrogge JB, Chapman KD, Mullen RT, Dyer JM.

Plant Signal Behav. 2013 Nov;8(11):e27141. doi: 10.4161/psb.27141. Epub 2013 Dec 4.

42.

Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR.

Plant Biotechnol J. 2014 Feb;12(2):231-9. doi: 10.1111/pbi.12131. Epub 2013 Oct 24.

43.

Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development.

Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD.

Plant Cell. 2013 Oct;25(10):3824-40. doi: 10.1105/tpc.113.119024. Epub 2013 Oct 22.

44.

N-Palmitoylethanolamine depot injection increased its tissue levels and those of other acylethanolamide lipids.

Grillo SL, Keereetaweep J, Grillo MA, Chapman KD, Koulen P.

Drug Des Devel Ther. 2013 Aug 12;7:747-52. doi: 10.2147/DDDT.S48324. eCollection 2013.

45.

Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

Horn PJ, Sturtevant D, Chapman KD.

Biochimie. 2014 Jan;96:28-36. doi: 10.1016/j.biochi.2013.08.010. Epub 2013 Aug 22.

PMID:
23973433
46.

A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast.

Wang S, Horn PJ, Liou LC, Muggeridge MI, Zhang Z, Chapman KD, Witt SN.

Biochem Biophys Res Commun. 2013 Aug 23;438(2):452-6. doi: 10.1016/j.bbrc.2013.07.100. Epub 2013 Jul 31.

47.

Identification of a new class of lipid droplet-associated proteins in plants.

Horn PJ, James CN, Gidda SK, Kilaru A, Dyer JM, Mullen RT, Ohlrogge JB, Chapman KD.

Plant Physiol. 2013 Aug;162(4):1926-36. doi: 10.1104/pp.113.222455. Epub 2013 Jul 2.

48.

Lipid signaling in plants.

Wang X, Chapman KD.

Front Plant Sci. 2013 Jun 27;4:216. doi: 10.3389/fpls.2013.00216. Print 2013. No abstract available.

49.

Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

Horn PJ, Silva JE, Anderson D, Fuchs J, Borisjuk L, Nazarenus TJ, Shulaev V, Cahoon EB, Chapman KD.

Plant J. 2013 Oct;76(1):138-50. doi: 10.1111/tpj.12278. Epub 2013 Aug 5.

50.

Analysis of fatty acid amide hydrolase activity in plants.

Kim SC, Faure L, Chapman KD.

Methods Mol Biol. 2013;1009:115-27. doi: 10.1007/978-1-62703-401-2_12.

PMID:
23681529

Supplemental Content

Loading ...
Support Center