Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex.

Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A.

Front Plant Sci. 2019 May 8;10:570. doi: 10.3389/fpls.2019.00570. eCollection 2019. Review.

2.

Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606.

Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM.

Front Microbiol. 2019 Apr 10;10:719. doi: 10.3389/fmicb.2019.00719. eCollection 2019. Review.

3.

The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization.

Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, García-Martín ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A, Loquet A, Dorrestein PC, Romero D.

Nat Commun. 2019 Apr 23;10(1):1919. doi: 10.1038/s41467-019-09944-x.

4.

Detection of White Root Rot in Avocado Trees by Remote Sensing.

Pérez-Bueno ML, Pineda M, Vida C, Fernández-Ortuño D, Torés JA, de Vicente A, Cazorla FM, Barón M.

Plant Dis. 2019 Jun;103(6):1119-1125. doi: 10.1094/PDIS-10-18-1778-RE. Epub 2019 Apr 17.

PMID:
30995422
5.

The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Pseudomonas chlororaphis PCL1606.

Calderón CE, Tienda S, Heredia-Ponce Z, Arrebola E, Cárcamo-Oyarce G, Eberl L, Cazorla FM.

Front Microbiol. 2019 Feb 28;10:396. doi: 10.3389/fmicb.2019.00396. eCollection 2019.

6.

Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate.

Pliego C, Crespo-Gómez JI, Pintado A, Pérez-Martínez I, de Vicente A, Cazorla FM, Ramos C.

Appl Environ Microbiol. 2019 Jan 23;85(3). pii: e01741-18. doi: 10.1128/AEM.01741-18. Print 2019 Feb 1.

7.

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Josic D, Filion M.

Environ Microbiol. 2019 Jan;21(1):437-455. doi: 10.1111/1462-2920.14476. Epub 2018 Dec 17.

PMID:
30421490
8.

Pantoea agglomerans as a New Etiological Agent of a Bacterial Necrotic Disease of Mango Trees.

Gutiérrez-Barranquero JA, Cazorla FM, Torés JA, de Vicente A.

Phytopathology. 2019 Jan;109(1):17-26. doi: 10.1094/PHYTO-06-18-0186-R. Epub 2018 Dec 4.

PMID:
30102576
9.

Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot.

Polonio Á, Vida C, de Vicente A, Cazorla FM.

Int Microbiol. 2017 Jun;20(2):95-104. doi: 10.2436/20.1501.01.289.

10.

Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family.

Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW.

BMC Genomics. 2017 May 10;18(1):365. doi: 10.1186/s12864-017-3763-x.

11.

Draft Genome Sequence of the Rhizobacterium Pseudomonas chlororaphis PCL1601, Displaying Biocontrol against Soilborne Phytopathogens.

Vida C, de Vicente A, Cazorla FM.

Genome Announc. 2017 Apr 6;5(14). pii: e00130-17. doi: 10.1128/genomeA.00130-17.

12.

Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells.

Vida C, Cazorla FM, de Vicente A.

Res Microbiol. 2017 Jul - Aug;168(6):583-593. doi: 10.1016/j.resmic.2017.03.007. Epub 2017 Apr 1.

PMID:
28373145
13.

Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells.

Vida C, Bonilla N, de Vicente A, Cazorla FM.

Front Microbiol. 2016 Jan 22;7:4. doi: 10.3389/fmicb.2016.00004. eCollection 2016.

14.

Analysis of Genetic Diversity of Fusarium tupiense, the Main Causal Agent of Mango Malformation Disease in Southern Spain.

Crespo M, Cazorla FM, de Vicente A, Arrebola E, Torés JA, Maymon M, Freeman S, Aoki T, O'Donnell K.

Plant Dis. 2016 Feb;100(2):276-286. doi: 10.1094/PDIS-02-15-0153-RE. Epub 2015 Dec 1.

PMID:
30694154
15.

Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear.

Puig M, Moragrega C, Ruz L, Calderón CE, Cazorla FM, Montesinos E, Llorente I.

Fungal Biol. 2016 Jan;120(1):61-71. doi: 10.1016/j.funbio.2015.10.007. Epub 2015 Nov 3.

PMID:
26693685
16.

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle.

Martínez-García PM, Rodríguez-Palenzuela P, Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Ramos C, Cazorla FM, de Vicente A.

PLoS One. 2015 Aug 27;10(8):e0136101. doi: 10.1371/journal.pone.0136101. eCollection 2015.

17.

Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, de Vicente A.

FEMS Microbiol Ecol. 2015 Jul;91(7). pii: fiv071. doi: 10.1093/femsec/fiv071. Epub 2015 Jun 24.

PMID:
26109133
18.

Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.

Bonilla N, Vida C, Martínez-Alonso M, Landa BB, Gaju N, Cazorla FM, de Vicente A.

Appl Environ Microbiol. 2015 May 15;81(10):3405-18. doi: 10.1128/AEM.03787-14. Epub 2015 Mar 13.

19.

Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol.

Calderón CE, Ramos C, de Vicente A, Cazorla FM.

Mol Plant Microbe Interact. 2015 Mar;28(3):249-60. doi: 10.1094/MPMI-10-14-0326-FI.

20.

darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606.

Calderón CE, Carrión VJ, de Vicente A, Cazorla FM.

Microbiology. 2014 Dec;160(Pt 12):2670-80. doi: 10.1099/mic.0.082677-0. Epub 2014 Sep 17.

PMID:
25234473
21.

Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process.

Calderón CE, de Vicente A, Cazorla FM.

FEMS Microbiol Ecol. 2014 Jul;89(1):20-31. doi: 10.1111/1574-6941.12319. Epub 2014 Mar 31.

22.

Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA.

Carrión VJ, van der Voort M, Arrebola E, Gutiérrez-Barranquero JA, de Vicente A, Raaijmakers JM, Cazorla FM.

BMC Microbiol. 2014 Feb 21;14:46. doi: 10.1186/1471-2180-14-46.

23.

A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production.

Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A.

Phytopathology. 2013 Nov;103(11):1115-29. doi: 10.1094/PHYTO-04-13-0093-R.

24.

The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol.

Calderón CE, Pérez-García A, de Vicente A, Cazorla FM.

Mol Plant Microbe Interact. 2013 May;26(5):554-65. doi: 10.1094/MPMI-01-13-0012-R.

25.

Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae.

Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM.

Appl Environ Microbiol. 2013 Feb;79(3):1028-33. doi: 10.1128/AEM.02644-12. Epub 2012 Nov 26.

26.

The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution.

Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A, Cazorla FM, Murillo J.

Appl Environ Microbiol. 2013 Feb;79(3):756-67. doi: 10.1128/AEM.03007-12. Epub 2012 Nov 9.

27.

The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae.

Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A.

PLoS One. 2012;7(5):e36709. doi: 10.1371/journal.pone.0036709. Epub 2012 May 17.

28.

First Report of Mango Malformation Disease Caused by Fusarium mangiferae in Spain.

Crespo M, Cazorla FM, Hermoso JM, Guirado E, Maymon M, Torés JA, Freeman S, de Vicente A.

Plant Dis. 2012 Feb;96(2):286. doi: 10.1094/PDIS-07-11-0599.

PMID:
30731821
29.

Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production.

Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A.

BMC Microbiol. 2012 Jan 17;12:10. doi: 10.1186/1471-2180-12-10.

30.

Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars.

Arrebola E, Cazorla FM, Perez-García A, de Vicente A.

Toxins (Basel). 2011 Sep;3(9):1089-110. doi: 10.3390/toxins3091089. Epub 2011 Aug 31. Review.

31.

The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits.

Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A.

Mol Plant Microbe Interact. 2011 Dec;24(12):1540-52. doi: 10.1094/MPMI-06-11-0162.

32.

Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops.

Pliego C, López-Herrera C, Ramos C, Cazorla FM.

Mol Plant Pathol. 2012 Apr;13(3):226-39. doi: 10.1111/j.1364-3703.2011.00753.x. Epub 2011 Oct 20. Review.

33.

Genes Involved in the Production of Antimetabolite Toxins by Pseudomonas syringae Pathovars.

Arrebola E, Cazorla FM, Pérez-García A, Vicente Ad.

Genes (Basel). 2011 Sep 15;2(3):640-60. doi: 10.3390/genes2030640.

34.

Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait.

González-Sánchez MÁ, Pérez-Jiménez RM, Pliego C, Ramos C, de Vicente A, Cazorla FM.

J Appl Microbiol. 2010 Jul;109(1):65-78. doi: 10.1111/j.1365-2672.2009.04628.x. Epub 2009 Nov 17.

35.

Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae.

Arrebola E, Cazorla FM, Codina JC, Gutiérrez-Barranquero JA, Pérez-García A, de Vicente A.

Int Microbiol. 2009 Jun;12(2):87-95.

36.

GFP sheds light on the infection process of avocado roots by Rosellinia necatrix.

Pliego C, Kanematsu S, Ruano-Rosa D, de Vicente A, López-Herrera C, Cazorla FM, Ramos C.

Fungal Genet Biol. 2009 Feb;46(2):137-45. doi: 10.1016/j.fgb.2008.11.009. Epub 2008 Dec 7.

PMID:
19100853
37.

Bacterial Apical Necrosis of Mango in Southern Spain: A Disease Caused by Pseudomonas syringae pv. syringae.

Cazorla FM, Torés JA, Olalla L, Pérez-García A, Farré JM, de Vicente A.

Phytopathology. 1998 Jul;88(7):614-20. doi: 10.1094/PHYTO.1998.88.7.614.

38.

Copper Resistance in Pseudomonas syringae Strains Isolated from Mango Is Encoded Mainly by Plasmids.

Cazorla FM, Arrebola E, Sesma A, Pérez-García A, Codina JC, Murillo J, de Vicente A.

Phytopathology. 2002 Aug;92(8):909-16. doi: 10.1094/PHYTO.2002.92.8.909.

39.

Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae.

Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C.

Environ Microbiol. 2008 Dec;10(12):3295-304. doi: 10.1111/j.1462-2920.2008.01721.x. Epub 2008 Aug 5.

PMID:
18684119
40.

Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions.

Romero D, Eugenia Rivera M, Cazorla FM, Codina JC, Fernández-Ortuño D, Torés JA, Pérez-García A, de Vicente A.

J Plant Physiol. 2008 Dec;165(18):1895-905. doi: 10.1016/j.jplph.2008.04.020. Epub 2008 Jun 27.

PMID:
18585824
41.

62-kb plasmids harboring rulAB homologues confer UV-tolerance and epiphytic fitness to Pseudomonas syringae pv. syringae mango isolates.

Cazorla FM, Codina JC, Abad C, Arrebola E, Torés JA, Murillo J, Pérez-García A, de Vicente A.

Microb Ecol. 2008 Aug;56(2):283-91. Epub 2007 Dec 6.

PMID:
18058161
42.

Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity.

Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJ, Vicente Ad, Bloemberg G.

J Appl Microbiol. 2007 Nov;103(5):1950-9.

43.

A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence.

Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A.

Mol Plant Microbe Interact. 2007 May;20(5):500-9.

44.

Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers.

Pliego C, Cazorla FM, González-Sánchez MA, Pérez-Jiménez RM, de Vicente A, Ramos C.

Res Microbiol. 2007 Jun;158(5):463-70. Epub 2007 Mar 19.

PMID:
17467245
45.

The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.

Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A.

Mol Plant Microbe Interact. 2007 Apr;20(4):430-40.

46.

Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control.

Kennelly MM, Cazorla FM, de Vicente A, Ramos C, Sundin GW.

Plant Dis. 2007 Jan;91(1):4-17. doi: 10.1094/PD-91-0004. No abstract available.

PMID:
30781059
47.

Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol.

Cazorla FM, Duckett SB, Bergström ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV.

Mol Plant Microbe Interact. 2006 Apr;19(4):418-28.

48.

Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae.

Olea F, Pérez-García A, Cantón FR, Rivera ME, Cañas R, Avila C, Cazorla FM, Cánovas FM, de Vicente A.

Plant Cell Physiol. 2004 Jun;45(6):770-80.

PMID:
15215512
49.

Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca.

Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A.

Appl Microbiol Biotechnol. 2004 Apr;64(2):263-9. Epub 2003 Sep 16.

PMID:
13680203
50.

Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves.

Romero D, Rivera ME, Cazorla FM, de Vicente A, Pérez-García A.

Mycol Res. 2003 Jan;107(Pt 1):64-71.

PMID:
12735245

Supplemental Content

Loading ...
Support Center