Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Training and evaluation corpora for the extraction of causal relationships encoded in biological expression language (BEL).

Fluck J, Madan S, Ansari S, Kodamullil AT, Karki R, Rastegar-Mojarad M, Catlett NL, Hayes W, Szostak J, Hoeng J, Peitsch M.

Database (Oxford). 2016 Aug 23;2016. pii: baw113. doi: 10.1093/database/baw113. Print 2016.

2.

Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data.

Catlett NL, Bargnesi AJ, Ungerer S, Seagaran T, Ladd W, Elliston KO, Pratt D.

BMC Bioinformatics. 2013 Nov 23;14:340. doi: 10.1186/1471-2105-14-340.

3.

Comparative transcriptional network modeling of three PPAR-α/γ co-agonists reveals distinct metabolic gene signatures in primary human hepatocytes.

Deehan R, Maerz-Weiss P, Catlett NL, Steiner G, Wong B, Wright MB, Blander G, Elliston KO, Ladd W, Bobadilla M, Mizrahi J, Haefliger C, Edgar A.

PLoS One. 2012;7(4):e35012. doi: 10.1371/journal.pone.0035012. Epub 2012 Apr 13.

4.

Early patient stratification and predictive biomarkers in drug discovery and development: a case study of ulcerative colitis anti-TNF therapy.

Laifenfeld D, Drubin DA, Catlett NL, Park JS, Van Hooser AA, Frushour BP, de Graaf D, Fryburg DA, Deehan R.

Adv Exp Med Biol. 2012;736:645-53. doi: 10.1007/978-1-4419-7210-1_38.

PMID:
22161357
5.

A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue.

Schlage WK, Westra JW, Gebel S, Catlett NL, Mathis C, Frushour BP, Hengstermann A, Van Hooser A, Poussin C, Wong B, Lietz M, Park J, Drubin D, Veljkovic E, Peitsch MC, Hoeng J, Deehan R.

BMC Syst Biol. 2011 Oct 19;5:168. doi: 10.1186/1752-0509-5-168.

6.

Construction of a computable cell proliferation network focused on non-diseased lung cells.

Westra JW, Schlage WK, Frushour BP, Gebel S, Catlett NL, Han W, Eddy SF, Hengstermann A, Matthews AL, Mathis C, Lichtner RB, Poussin C, Talikka M, Veljkovic E, Van Hooser AA, Wong B, Maria MJ, Peitsch MC, Deehan R, Hoeng J.

BMC Syst Biol. 2011 Jul 2;5:105. doi: 10.1186/1752-0509-5-105.

7.

A point mutation in the cargo-binding domain of myosin V affects its interaction with multiple cargoes.

Pashkova N, Catlett NL, Novak JL, Weisman LS.

Eukaryot Cell. 2005 Apr;4(4):787-98.

8.

Myosin V attachment to cargo requires the tight association of two functional subdomains.

Pashkova N, Catlett NL, Novak JL, Wu G, Lu R, Cohen RE, Weisman LS.

J Cell Biol. 2005 Jan 31;168(3):359-64.

9.

Whole-genome analysis of two-component signal transduction genes in fungal pathogens.

Catlett NL, Yoder OC, Turgeon BG.

Eukaryot Cell. 2003 Dec;2(6):1151-61.

10.

Identification of an organelle-specific myosin V receptor.

Ishikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS.

J Cell Biol. 2003 Mar 17;160(6):887-97.

11.

Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole.

Tang F, Kauffman EJ, Novak JL, Nau JJ, Catlett NL, Weisman LS.

Nature. 2003 Mar 6;422(6927):87-92. Epub 2003 Feb 16.

PMID:
12594460
12.

Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes.

Catlett NL, Duex JE, Tang F, Weisman LS.

J Cell Biol. 2000 Aug 7;150(3):513-26.

13.

Divide and multiply: organelle partitioning in yeast.

Catlett NL, Weisman LS.

Curr Opin Cell Biol. 2000 Aug;12(4):509-16. Review.

PMID:
10873824
14.
16.

Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology.

Bonangelino CJ, Catlett NL, Weisman LS.

Mol Cell Biol. 1997 Dec;17(12):6847-58.

17.

Supplemental Content

Loading ...
Support Center