Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia.

Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ.

Microbiome. 2019 Aug 14;7(1):114. doi: 10.1186/s40168-019-0727-1.

2.

Ecology and Evolution of Plant Microbiomes.

Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM.

Annu Rev Microbiol. 2019 Sep 8;73:69-88. doi: 10.1146/annurev-micro-090817-062524. Epub 2019 May 15.

PMID:
31091418
3.

Legacy of land use history determines reprogramming of plant physiology by soil microbiome.

Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE.

ISME J. 2019 Mar;13(3):738-751. doi: 10.1038/s41396-018-0300-0. Epub 2018 Oct 27.

PMID:
30368524
4.

Microbial Community Composition in Take-All Suppressive Soils.

Durán P, Tortella G, Viscardi S, Barra PJ, Carrión VJ, Mora ML, Pozo MJ.

Front Microbiol. 2018 Sep 19;9:2198. doi: 10.3389/fmicb.2018.02198. eCollection 2018.

5.

Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp.

Cordovez V, Schop S, Hordijk K, Dupré de Boulois H, Coppens F, Hanssen I, Raaijmakers JM, Carrión VJ.

Appl Environ Microbiol. 2018 Oct 30;84(22). pii: e01865-18. doi: 10.1128/AEM.01865-18. Print 2018 Nov 15.

6.

The wild side of plant microbiomes.

Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM.

Microbiome. 2018 Aug 16;6(1):143. doi: 10.1186/s40168-018-0519-z. No abstract available.

7.

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VCL, Medema MH, Eberl L, Raaijmakers JM.

ISME J. 2018 Sep;12(9):2307-2321. doi: 10.1038/s41396-018-0186-x. Epub 2018 Jun 13.

8.

Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

Durán P, Jorquera M, Viscardi S, Carrion VJ, Mora ML, Pozo MJ.

Front Microbiol. 2017 Aug 15;8:1552. doi: 10.3389/fmicb.2017.01552. eCollection 2017.

9.

Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani.

Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM.

Front Plant Sci. 2017 Jul 21;8:1262. doi: 10.3389/fpls.2017.01262. eCollection 2017.

10.

Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits.

Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM.

ISME J. 2017 Oct;11(10):2244-2257. doi: 10.1038/ismej.2017.85. Epub 2017 Jun 6.

11.

Erratum: Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides.

Nguyen DD, Melnik AV, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL Jr, Ghequire MG, Carrion VJ, Cheng TL, Duggan BM, Malone JG, Mauchline TH, Sanchez LM, Kilpatrick AM, Raaijmakers JM, De Mot R, Moore BS, Medema MH, Dorrestein PC.

Nat Microbiol. 2017 Jan 23;2:17010. doi: 10.1038/nmicrobiol.2017.10. No abstract available.

PMID:
28112718
12.

Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides.

Nguyen DD, Melnik AV, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL Jr, Ghequire MG, Carrion VJ, Cheng TL, Duggan BM, Malone JG, Mauchline TH, Sanchez LM, Kilpatrick AM, Raaijmakers JM, De Mot R, Moore BS, Medema MH, Dorrestein PC.

Nat Microbiol. 2016 Oct 31;2:16197. doi: 10.1038/nmicrobiol.2016.197. Erratum in: Nat Microbiol. 2017 Jan 23;2:17010.

13.

Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, van Wezel GP, Raaijmakers JM.

Front Microbiol. 2015 Oct 9;6:1081. doi: 10.3389/fmicb.2015.01081. eCollection 2015.

14.

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle.

Martínez-García PM, Rodríguez-Palenzuela P, Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Ramos C, Cazorla FM, de Vicente A.

PLoS One. 2015 Aug 27;10(8):e0136101. doi: 10.1371/journal.pone.0136101. eCollection 2015.

15.

Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, de Vicente A.

FEMS Microbiol Ecol. 2015 Jul;91(7). pii: fiv071. doi: 10.1093/femsec/fiv071. Epub 2015 Jun 24.

PMID:
26109133
16.

darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606.

Calderón CE, Carrión VJ, de Vicente A, Cazorla FM.

Microbiology. 2014 Dec;160(Pt 12):2670-80. doi: 10.1099/mic.0.082677-0. Epub 2014 Sep 17.

PMID:
25234473
17.

Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA.

Carrión VJ, van der Voort M, Arrebola E, Gutiérrez-Barranquero JA, de Vicente A, Raaijmakers JM, Cazorla FM.

BMC Microbiol. 2014 Feb 21;14:46. doi: 10.1186/1471-2180-14-46.

18.

A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production.

Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A.

Phytopathology. 2013 Nov;103(11):1115-29. doi: 10.1094/PHYTO-04-13-0093-R.

19.

Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae.

Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM.

Appl Environ Microbiol. 2013 Feb;79(3):1028-33. doi: 10.1128/AEM.02644-12. Epub 2012 Nov 26.

20.

The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution.

Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A, Cazorla FM, Murillo J.

Appl Environ Microbiol. 2013 Feb;79(3):756-67. doi: 10.1128/AEM.03007-12. Epub 2012 Nov 9.

21.

The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae.

Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A.

PLoS One. 2012;7(5):e36709. doi: 10.1371/journal.pone.0036709. Epub 2012 May 17.

22.

Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production.

Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A.

BMC Microbiol. 2012 Jan 17;12:10. doi: 10.1186/1471-2180-12-10.

Supplemental Content

Loading ...
Support Center