Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ.

Hogan AM, Scoffone VC, Makarov V, Gislason AS, Tesfu H, Stietz MS, Brassinga AKC, Domaratzki M, Li X, Azzalin A, Biggiogera M, Riabova O, Monakhova N, Chiarelli LR, Riccardi G, Buroni S, Cardona ST.

Antimicrob Agents Chemother. 2018 Nov 26;62(12). pii: e01231-18. doi: 10.1128/AAC.01231-18. Print 2018 Dec.

2.

A c-di-GMP-Modulating Protein Regulates Swimming Motility of Burkholderia cenocepacia in Response to Arginine and Glutamate.

Kumar B, Sorensen JL, Cardona ST.

Front Cell Infect Microbiol. 2018 Feb 28;8:56. doi: 10.3389/fcimb.2018.00056. eCollection 2018.

4.

Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies.

Cardona ST, Choy M, Hogan AM.

J Membr Biol. 2018 Feb;251(1):75-89. doi: 10.1007/s00232-017-9995-5. Epub 2017 Nov 2.

PMID:
29098331
5.

First description of rpsJ and mepA mutations associated with tigecycline resistance in Staphylococcus aureus isolated from a cystic fibrosis patient during antibiotic therapy.

Haim MS, Di Gregorio S, Galanternik L, Lubovich S, Vázquez M, Bharat A, Zaheer R, Golding GR, Graham M, Van Domselaar G, Cardona ST, Mollerach M.

Int J Antimicrob Agents. 2017 Dec;50(6):739-741. doi: 10.1016/j.ijantimicag.2017.10.003. Epub 2017 Oct 13. No abstract available.

PMID:
29038088
6.

Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia.

Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST.

Can J Microbiol. 2017 Oct;63(10):857-863. doi: 10.1139/cjm-2017-0350. Epub 2017 Aug 17.

PMID:
28817787
7.

Synthetic cystic fibrosis sputum medium diminishes Burkholderia cenocepacia antifungal activity against Aspergillus fumigatus independently of phenylacetic acid production.

Lightly TJ, Phung RR, Sorensen JL, Cardona ST.

Can J Microbiol. 2017 May;63(5):427-438. doi: 10.1139/cjm-2016-0705. Epub 2017 Feb 8.

PMID:
28178425
8.

Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.

Gislason AS, Choy M, Bloodworth RA, Qu W, Stietz MS, Li X, Zhang C, Cardona ST.

Antimicrob Agents Chemother. 2016 Dec 27;61(1). pii: e00790-16. doi: 10.1128/AAC.00790-16. Print 2017 Jan.

9.

Draft Genome Sequences of Burkholderia contaminans FFI-28, a Strain Isolated from a Contaminated Pharmaceutical Solution.

Haim MS, Mollerach M, Van Domselaar G, Teves SA, Degrossi J, Cardona ST.

Genome Announc. 2016 Oct 27;4(5). pii: e01177-16. doi: 10.1128/genomeA.01177-16.

10.

Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

Nunvar J, Kalferstova L, Bloodworth RA, Kolar M, Degrossi J, Lubovich S, Cardona ST, Drevinek P.

PLoS One. 2016 Aug 11;11(8):e0160975. doi: 10.1371/journal.pone.0160975. eCollection 2016.

11.

Synthetic Cystic Fibrosis Sputum Medium Regulates Flagellar Biosynthesis through the flhF Gene in Burkholderia cenocepacia.

Kumar B, Cardona ST.

Front Cell Infect Microbiol. 2016 Jun 14;6:65. doi: 10.3389/fcimb.2016.00065. eCollection 2016.

12.

An electron transfer flavoprotein is essential for viability and its depletion causes a rod-to-sphere change in Burkholderia cenocepacia.

Bloodworth RA, Zlitni S, Brown ED, Cardona ST.

Microbiology. 2015 Oct;161(10):1909-20. doi: 10.1099/mic.0.000156. Epub 2015 Aug 6.

PMID:
26253539
13.

Draft Genome Sequences of Burkholderia contaminans, a Burkholderia cepacia Complex Species That Is Increasingly Recovered from Cystic Fibrosis Patients.

Bloodworth RA, Selin C, López De Volder MA, Drevinek P, Galanternik L, Degrossi J, Cardona ST.

Genome Announc. 2015 Aug 6;3(4). pii: e00766-15. doi: 10.1128/genomeA.00766-15.

14.

A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

Selin C, Stietz MS, Blanchard JE, Gehrke SS, Bernard S, Hall DG, Brown ED, Cardona ST.

PLoS One. 2015 Jun 8;10(6):e0128587. doi: 10.1371/journal.pone.0128587. eCollection 2015.

15.

Chemical inhibition of bacterial ribosome biogenesis shows efficacy in a worm infection model.

Stokes JM, Selin C, Cardona ST, Brown ED.

Antimicrob Agents Chemother. 2015 May;59(5):2918-20. doi: 10.1128/AAC.04690-14. Epub 2015 Feb 23.

16.

The attenuated virulence of a Burkholderia cenocepacia paaABCDE mutant is due to inhibition of quorum sensing by release of phenylacetic acid.

Pribytkova T, Lightly TJ, Kumar B, Bernier SP, Sorensen JL, Surette MG, Cardona ST.

Mol Microbiol. 2014 Nov;94(3):522-36. doi: 10.1111/mmi.12771. Epub 2014 Sep 19.

17.

Genomic tools to profile antibiotic mode of action.

Cardona ST, Selin C, Gislason AS.

Crit Rev Microbiol. 2015;41(4):465-72. doi: 10.3109/1040841X.2013.866073. Epub 2014 Mar 12. Review.

PMID:
24617440
18.

Burkholderia cenocepacia conditional growth mutant library created by random promoter replacement of essential genes.

Bloodworth RA, Gislason AS, Cardona ST.

Microbiologyopen. 2013 Apr;2(2):243-58. doi: 10.1002/mbo3.71. Epub 2013 Feb 7.

19.

Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci.

Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA.

J Antibiot (Tokyo). 2012 Feb;65(2):73-7. doi: 10.1038/ja.2011.113. Epub 2011 Dec 14.

20.

Characterization of the poly-β-1,6-N-acetylglucosamine polysaccharide component of Burkholderia biofilms.

Yakandawala N, Gawande PV, LoVetri K, Cardona ST, Romeo T, Nitz M, Madhyastha S.

Appl Environ Microbiol. 2011 Dec;77(23):8303-9. doi: 10.1128/AEM.05814-11. Epub 2011 Oct 7.

21.

Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

Yudistira H, McClarty L, Bloodworth RA, Hammond SA, Butcher H, Mark BL, Cardona ST.

Microb Pathog. 2011 Sep;51(3):186-93. doi: 10.1016/j.micpath.2011.04.002. Epub 2011 Apr 13.

PMID:
21511027
22.
23.

Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56-2.

Hamlin JN, Bloodworth RA, Cardona ST.

BMC Microbiol. 2009 Oct 18;9:222. doi: 10.1186/1471-2180-9-222.

24.

A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model.

Law RJ, Hamlin JN, Sivro A, McCorrister SJ, Cardama GA, Cardona ST.

J Bacteriol. 2008 Nov;190(21):7209-18. doi: 10.1128/JB.00481-08. Epub 2008 Sep 5.

25.

A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability.

Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, Govan JR, Valvano MA.

J Bacteriol. 2007 May;189(9):3639-44. Epub 2007 Mar 2.

26.

Identification of essential operons with a rhamnose-inducible promoter in Burkholderia cenocepacia.

Cardona ST, Mueller CL, Valvano MA.

Appl Environ Microbiol. 2006 Apr;72(4):2547-55.

27.

A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex.

Wopperer J, Cardona ST, Huber B, Jacobi CA, Valvano MA, Eberl L.

Appl Environ Microbiol. 2006 Feb;72(2):1579-87.

28.

Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model.

Cardona ST, Wopperer J, Eberl L, Valvano MA.

FEMS Microbiol Lett. 2005 Sep 1;250(1):97-104.

29.
30.

Survival and persistence of opportunistic Burkholderia species in host cells.

Valvano MA, Keith KE, Cardona ST.

Curr Opin Microbiol. 2005 Feb;8(1):99-105. Review.

PMID:
15694863

Supplemental Content

Loading ...
Support Center