Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

Live-animal imaging of native haematopoietic stem and progenitor cells.

Christodoulou C, Spencer JA, Yeh SA, Turcotte R, Kokkaliaris KD, Panero R, Ramos A, Guo G, Seyedhassantehrani N, Esipova TV, Vinogradov SA, Rudzinskas S, Zhang Y, Perkins AS, Orkin SH, Calogero RA, Schroeder T, Lin CP, Camargo FD.

Nature. 2020 Feb;578(7794):278-283. doi: 10.1038/s41586-020-1971-z. Epub 2020 Feb 5.

PMID:
32025033
2.

Lineage tracing on transcriptional landscapes links state to fate during differentiation.

Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM.

Science. 2020 Feb 14;367(6479). pii: eaaw3381. doi: 10.1126/science.aaw3381. Epub 2020 Jan 23.

PMID:
31974159
3.

Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway.

Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, Knelson EH, Xie Y, Lim K, Cejas P, Portell A, Lizotte PH, Ficarro SB, Li S, Chen T, Haikala HM, Wang H, Bahcall M, Gao Y, Shalhout S, Boettcher S, Shin BH, Thai T, Wilkens MK, Tillgren ML, Mushajiang M, Xu M, Choi J, Bertram AA, Ebert BL, Beroukhim R, Bandopadhayay P, Awad MM, Gokhale PC, Kirschmeier PT, Marto JA, Camargo FD, Haq R, Paweletz CP, Wong KK, Barbie DA, Long HW, Gray NS, Jänne PA.

Cancer Cell. 2020 Jan 13;37(1):104-122.e12. doi: 10.1016/j.ccell.2019.12.006.

PMID:
31935369
4.

Hepatocyte Stress Increases Expression of Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis.

Mooring M, Fowl BH, Lum SZC, Liu Y, Yao K, Softic S, Kirchner R, Bernstein A, Singhi AD, Jay DG, Kahn CR, Camargo FD, Yimlamai D.

Hepatology. 2019 Sep 10. doi: 10.1002/hep.30928. [Epub ahead of print]

PMID:
31505040
5.

Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration.

Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, Sen A, Miyazaki M, Anakk S, Dawson PA, Ono N, Shalek AK, van Oudenaarden A, Camargo FD.

Cell Stem Cell. 2019 Jul 3;25(1):23-38.e8. doi: 10.1016/j.stem.2019.04.004. Epub 2019 May 9.

PMID:
31080134
6.

Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis.

Osorio FG, Rosendahl Huber A, Oka R, Verheul M, Patel SH, Hasaart K, de la Fonteijne L, Varela I, Camargo FD, van Boxtel R.

Cell Rep. 2018 Nov 27;25(9):2308-2316.e4. doi: 10.1016/j.celrep.2018.11.014.

7.

NUAK2 is a critical YAP target in liver cancer.

Yuan WC, Pepe-Mooney B, Galli GG, Dill MT, Huang HT, Hao M, Wang Y, Liang H, Calogero RA, Camargo FD.

Nat Commun. 2018 Nov 16;9(1):4834. doi: 10.1038/s41467-018-07394-5.

8.

Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth.

Cox AG, Tsomides A, Yimlamai D, Hwang KL, Miesfeld J, Galli GG, Fowl BH, Fort M, Ma KY, Sullivan MR, Hosios AM, Snay E, Yuan M, Brown KK, Lien EC, Chhangawala S, Steinhauser ML, Asara JM, Houvras Y, Link B, Vander Heiden MG, Camargo FD, Goessling W.

EMBO J. 2018 Nov 15;37(22). pii: e100294. doi: 10.15252/embj.2018100294. Epub 2018 Oct 22.

9.

YAP-TEAD signaling promotes basal cell carcinoma development via a c-JUN/AP1 axis.

Maglic D, Schlegelmilch K, Dost AF, Panero R, Dill MT, Calogero RA, Camargo FD.

EMBO J. 2018 Sep 3;37(17). pii: e98642. doi: 10.15252/embj.201798642. Epub 2018 Jul 23.

10.

Clonal analysis of lineage fate in native haematopoiesis.

Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, Sun J, Calogero RA, Klein AM, Camargo FD.

Nature. 2018 Jan 11;553(7687):212-216. doi: 10.1038/nature25168. Epub 2018 Jan 3.

11.

YAP suppresses gluconeogenic gene expression through PGC1α.

Hu Y, Shin DJ, Pan H, Lin Z, Dreyfuss JM, Camargo FD, Miao J, Biddinger SB.

Hepatology. 2017 Dec;66(6):2029-2041. doi: 10.1002/hep.29373. Epub 2017 Oct 30.

12.

Hippo Signaling in the Liver Regulates Organ Size, Cell Fate, and Carcinogenesis.

Patel SH, Camargo FD, Yimlamai D.

Gastroenterology. 2017 Feb;152(3):533-545. doi: 10.1053/j.gastro.2016.10.047. Epub 2016 Dec 19. Review.

13.

Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity.

Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, Ochiya T.

Cell Stem Cell. 2017 Jan 5;20(1):41-55. doi: 10.1016/j.stem.2016.10.007. Epub 2016 Nov 10.

14.

Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth.

Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, O'Connor K, Galli GG, Yimlamai D, Chhangawala S, Yuan M, Lien EC, Wucherpfennig J, Nissim S, Minami A, Cohen DE, Camargo FD, Asara JM, Houvras Y, Stainier DYR, Goessling W.

Nat Cell Biol. 2016 Aug;18(8):886-896. doi: 10.1038/ncb3389. Epub 2016 Jul 18.

15.

YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers.

Galli GG, Carrara M, Yuan WC, Valdes-Quezada C, Gurung B, Pepe-Mooney B, Zhang T, Geeven G, Gray NS, de Laat W, Calogero RA, Camargo FD.

Mol Cell. 2015 Oct 15;60(2):328-37. doi: 10.1016/j.molcel.2015.09.001. Epub 2015 Oct 1.

16.

Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

Yimlamai D, Fowl BH, Camargo FD.

J Hepatol. 2015 Dec;63(6):1491-501. doi: 10.1016/j.jhep.2015.07.008. Epub 2015 Jul 28. Review.

17.

MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia.

Gentner B, Pochert N, Rouhi A, Boccalatte F, Plati T, Berg T, Sun SM, Mah SM, Mirkovic-Hösle M, Ruschmann J, Muranyi A, Leierseder S, Argiropoulos B, Starczynowski DT, Karsan A, Heuser M, Hogge D, Camargo FD, Engelhardt S, Döhner H, Buske C, Jongen-Lavrencic M, Naldini L, Humphries RK, Kuchenbauer F.

Exp Hematol. 2015 Oct;43(10):858-868.e7. doi: 10.1016/j.exphem.2015.05.018. Epub 2015 Jul 8.

18.

Clonal dynamics of native haematopoiesis.

Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD.

Nature. 2014 Oct 16;514(7522):322-7. doi: 10.1038/nature13824. Epub 2014 Oct 5.

19.

Cytokinesis failure triggers hippo tumor suppressor pathway activation.

Ganem NJ, Cornils H, Chiu SY, O'Rourke KP, Arnaud J, Yimlamai D, Théry M, Camargo FD, Pellman D.

Cell. 2014 Aug 14;158(4):833-848. doi: 10.1016/j.cell.2014.06.029.

20.

The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation.

Tremblay AM, Missiaglia E, Galli GG, Hettmer S, Urcia R, Carrara M, Judson RN, Thway K, Nadal G, Selfe JL, Murray G, Calogero RA, De Bari C, Zammit PS, Delorenzi M, Wagers AJ, Shipley J, Wackerhage H, Camargo FD.

Cancer Cell. 2014 Aug 11;26(2):273-87. doi: 10.1016/j.ccr.2014.05.029. Epub 2014 Jul 31.

21.

Hippo pathway activity influences liver cell fate.

Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ, Camargo FD.

Cell. 2014 Jun 5;157(6):1324-38. doi: 10.1016/j.cell.2014.03.060.

22.

Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion.

Zhang H, von Gise A, Liu Q, Hu T, Tian X, He L, Pu W, Huang X, He L, Cai CL, Camargo FD, Pu WT, Zhou B.

J Biol Chem. 2014 Jul 4;289(27):18681-92. doi: 10.1074/jbc.M114.554584. Epub 2014 May 15.

23.

Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.

Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, Gregory RI.

Cell. 2014 Feb 27;156(5):893-906. doi: 10.1016/j.cell.2013.12.043.

24.

Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis.

Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE, Beede AM, Montoro DT, Sinkevicius KW, Walton ZE, Barrios J, Weiss DJ, Camargo FD, Wong KK, Kim CF.

EMBO J. 2014 Mar 3;33(5):468-81. doi: 10.1002/embj.201386082. Epub 2014 Feb 4. Erratum in: EMBO J. 2014 Jul 1;33(13):1502.

25.

A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway.

Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, Kim C, Camargo FD.

Nat Cell Biol. 2014 Jan;16(1):108-17. doi: 10.1038/ncb2884. Epub 2013 Dec 22. Erratum in: Nat Cell Biol. 2014 Feb;16(2):200. Wong, Kwok-Kim [corrected to Wong, Kwok-Kin].

26.

The hippo tumor suppressor network: from organ size control to stem cells and cancer.

Halder G, Camargo FD.

Cancer Res. 2013 Nov 1;73(21):6389-92. doi: 10.1158/0008-5472.CAN-13-2392. Epub 2013 Sep 10. No abstract available.

27.

The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development.

Barry ER, Camargo FD.

Curr Opin Cell Biol. 2013 Apr;25(2):247-53. doi: 10.1016/j.ceb.2012.12.006. Epub 2013 Jan 10. Review.

PMID:
23312716
28.

Restriction of intestinal stem cell expansion and the regenerative response by YAP.

Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, Fuchs CS, Magness ST, Smits R, Ogino S, Kuo CJ, Camargo FD.

Nature. 2013 Jan 3;493(7430):106-10. doi: 10.1038/nature11693. Epub 2012 Nov 25.

29.

YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29.

Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL.

Nat Cell Biol. 2012 Dec;14(12):1322-9.

30.

The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells.

Judson RN, Tremblay AM, Knopp P, White RB, Urcia R, De Bari C, Zammit PS, Camargo FD, Wackerhage H.

J Cell Sci. 2012 Dec 15;125(Pt 24):6009-19. doi: 10.1242/jcs.109546. Epub 2012 Oct 4.

31.

Hippo signaling in mammalian stem cells.

Tremblay AM, Camargo FD.

Semin Cell Dev Biol. 2012 Sep;23(7):818-26. doi: 10.1016/j.semcdb.2012.08.001. Epub 2012 Aug 8. Review.

PMID:
23034192
32.

The Hippo signaling pathway and stem cell biology.

Ramos A, Camargo FD.

Trends Cell Biol. 2012 Jul;22(7):339-46. doi: 10.1016/j.tcb.2012.04.006. Epub 2012 May 31. Review.

33.

YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy.

von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2394-9. doi: 10.1073/pnas.1116136109. Epub 2012 Jan 30.

34.

Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance.

Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J.

Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1312-20. doi: 10.1073/pnas.1110428108. Epub 2011 Oct 31.

35.

Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells.

Kuchenbauer F, Mah SM, Heuser M, McPherson A, Rüschmann J, Rouhi A, Berg T, Bullinger L, Argiropoulos B, Morin RD, Lai D, Starczynowski DT, Karsan A, Eaves CJ, Watahiki A, Wang Y, Aparicio SA, Ganser A, Krauter J, Döhner H, Döhner K, Marra MA, Camargo FD, Palmqvist L, Buske C, Humphries RK.

Blood. 2011 Sep 22;118(12):3350-8. doi: 10.1182/blood-2010-10-312454. Epub 2011 May 31.

PMID:
21628414
36.

α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1.

Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V.

Sci Signal. 2011 May 24;4(174):ra33. doi: 10.1126/scisignal.2001823.

37.

Yap1 acts downstream of α-catenin to control epidermal proliferation.

Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD.

Cell. 2011 Mar 4;144(5):782-95. doi: 10.1016/j.cell.2011.02.031.

38.

Generation of iPSCs from cultured human malignant cells.

Carette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD, Wernig M, Jaenisch R, Brummelkamp TR.

Blood. 2010 May 20;115(20):4039-42. doi: 10.1182/blood-2009-07-231845. Epub 2010 Mar 16.

39.

Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c.

Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD.

Nat Immunol. 2009 Mar;10(3):289-96. doi: 10.1038/ni.1694. Epub 2009 Jan 25.

PMID:
19169261
40.

The impact of microRNAs on protein output.

Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP.

Nature. 2008 Sep 4;455(7209):64-71. doi: 10.1038/nature07242. Epub 2008 Jul 30.

41.

Isolation and functional characterization of side population stem cells.

Johnnidis JB, Camargo FD.

Methods Mol Biol. 2008;430:183-93. doi: 10.1007/978-1-59745-182-6_13.

PMID:
18370300
42.

Regulation of progenitor cell proliferation and granulocyte function by microRNA-223.

Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD.

Nature. 2008 Feb 28;451(7182):1125-9. doi: 10.1038/nature06607. Epub 2008 Feb 17.

PMID:
18278031
43.

Oct4 expression is not required for mouse somatic stem cell self-renewal.

Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R.

Cell Stem Cell. 2007 Oct 11;1(4):403-15.

44.

YAP1 increases organ size and expands undifferentiated progenitor cells.

Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR.

Curr Biol. 2007 Dec 4;17(23):2054-60. Epub 2007 Nov 1. Erratum in: Curr Biol. 2007 Dec 4;17(23):2094.

45.

Hematopoietic stem cells do not engraft with absolute efficiencies.

Camargo FD, Chambers SM, Drew E, McNagny KM, Goodell MA.

Blood. 2006 Jan 15;107(2):501-7. Epub 2005 Oct 4.

46.

Isolation and characterization of side population cells.

Goodell MA, McKinney-Freeman S, Camargo FD.

Methods Mol Biol. 2005;290:343-52.

PMID:
15361673
47.

Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners.

Camargo FD, Finegold M, Goodell MA.

J Clin Invest. 2004 May;113(9):1266-70.

48.

Stem cell plasticity: from transdifferentiation to macrophage fusion.

Camargo FD, Chambers SM, Goodell MA.

Cell Prolif. 2004 Feb;37(1):55-65. Review.

49.

Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates.

Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA.

Nat Med. 2003 Dec;9(12):1520-7. Epub 2003 Nov 16. Erratum in: Nat Med. 2004 Jan;10(1):105. Capetenaki, Yassemi [corrected to Capetanaki, Yassemi].

PMID:
14625546
50.

Muscle-derived hematopoietic stem cells are hematopoietic in origin.

McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA.

Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1341-6.

Supplemental Content

Loading ...
Support Center