Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Establishment of a Protein Concentration Gradient in the Outer Membrane Requires Two Diffusion-Limiting Mechanisms.

Ginez LD, Osorio A, Camarena L, Poggio S.

J Bacteriol. 2019 Aug 8;201(17). pii: e00177-19. doi: 10.1128/JB.00177-19. Print 2019 Sep 1.

PMID:
31209077
2.

Characterization of FlgP, an Essential Protein for Flagellar Assembly in Rhodobacter sphaeroides.

Pérez-González C, Domenzain C, Poggio S, González-Halphen D, Dreyfus G, Camarena L.

J Bacteriol. 2019 Feb 11;201(5). pii: e00752-18. doi: 10.1128/JB.00752-18. Print 2019 Mar 1.

3.

Architecture of divergent flagellar promoters controlled by CtrA in Rhodobacter sphaeroides.

Rivera-Osorio A, Osorio A, Poggio S, Dreyfus G, Camarena L.

BMC Microbiol. 2018 Oct 10;18(1):129. doi: 10.1186/s12866-018-1264-y.

4.

Biochemical and Phylogenetic Study of SltF, a Flagellar Lytic Transglycosylase from Rhodobacter sphaeroides.

García-Ramos M, de la Mora J, Ballado T, Camarena L, Dreyfus G.

J Bacteriol. 2018 Sep 24;200(20). pii: e00397-18. doi: 10.1128/JB.00397-18. Print 2018 Oct 15.

5.

Purification of Fla2 Flagella of Rhodobacter sphaeroides.

de la Mora J, Camarena L, Dreyfus G.

Methods Mol Biol. 2017;1593:273-283. doi: 10.1007/978-1-4939-6927-2_22.

PMID:
28389962
6.

A New Essential Cell Division Protein in Caulobacter crescentus.

Osorio A, Camarena L, Cevallos MA, Poggio S.

J Bacteriol. 2017 Mar 28;199(8). pii: e00811-16. doi: 10.1128/JB.00811-16. Print 2017 Apr 15.

7.

The Master Regulators of the Fla1 and Fla2 Flagella of Rhodobacter sphaeroides Control the Expression of Their Cognate CheY Proteins.

Hernandez-Valle J, Domenzain C, de la Mora J, Poggio S, Dreyfus G, Camarena L.

J Bacteriol. 2017 Feb 14;199(5). pii: e00670-16. doi: 10.1128/JB.00670-16. Print 2017 Mar 1.

8.

An Optimized Centrifugal Method for Separation of Semen from Superabsorbent Polymers for Forensic Analysis.

Camarena LR, Glasscock BK, Daniels D, Ackley N, Sciarretta M, Seashols-Williams SJ.

J Forensic Sci. 2017 Mar;62(2):411-416. doi: 10.1111/1556-4029.13294. Epub 2016 Dec 1.

PMID:
27907243
9.

Correction for de la Mora et al., Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides.

de la Mora J, Uchida K, Martínez Del Campo A, Camarena L, Aizawa S, Dreyfus G.

J Bacteriol. 2016 Jul 28;198(16):2277. doi: 10.1128/JB.00480-16. Print 2016 Aug 15. No abstract available.

10.

Erratum for Osorio-Valeriano et al., Biochemical Characterization of the Flagellar Rod Components of Rhodobacter sphaeroides: Properties and Interactions.

Osorio-Valeriano M, de la Mora J, Camarena L, Dreyfus G.

J Bacteriol. 2016 Jul 28;198(16):2275. doi: 10.1128/JB.00479-16. Print 2016 Aug 15. No abstract available.

11.

Biochemical Characterization of the Flagellar Rod Components of Rhodobacter sphaeroides: Properties and Interactions.

Osorio-Valeriano M, de la Mora J, Camarena L, Dreyfus G.

J Bacteriol. 2015 Nov 16;198(3):544-52. doi: 10.1128/JB.00836-15. Print 2016 Feb 1. Erratum in: J Bacteriol. 2016 Aug 15;198(16):2275.

12.

Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides.

de la Mora J, Uchida K, del Campo AM, Camarena L, Aizawa S, Dreyfus G.

J Bacteriol. 2015 Sep;197(17):2859-66. doi: 10.1128/JB.00170-15. Epub 2015 Jun 29. Erratum in: J Bacteriol. 2016 Aug 15;198(16):2277.

13.

Induction of the lateral flagellar system of Vibrio shilonii is an early event after inhibition of the sodium ion flux in the polar flagellum.

González Y, Camarena L, Dreyfus G.

Can J Microbiol. 2015 Mar;61(3):183-91. doi: 10.1139/cjm-2014-0579. Epub 2014 Nov 27.

PMID:
25639364
14.

The flagellar set Fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of Fla1.

Vega-Baray B, Domenzain C, Rivera A, Alfaro-López R, Gómez-César E, Poggio S, Dreyfus G, Camarena L.

J Bacteriol. 2015 Mar;197(5):833-47. doi: 10.1128/JB.02429-14. Epub 2014 Dec 15.

15.

A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides.

Fabela S, Domenzain C, De la Mora J, Osorio A, Ramirez-Cabrera V, Poggio S, Dreyfus G, Camarena L.

J Bacteriol. 2013 Dec;195(23):5285-96. doi: 10.1128/JB.00760-13. Epub 2013 Sep 20.

16.

A novel component of the Rhodobacter sphaeroides Fla1 flagellum is essential for motor rotation.

Ramírez-Cabrera V, Poggio S, Domenzain C, Osorio A, Dreyfus G, Camarena L.

J Bacteriol. 2012 Nov;194(22):6174-83. doi: 10.1128/JB.00850-12. Epub 2012 Sep 7.

17.

The C terminus of the flagellar muramidase SltF modulates the interaction with FlgJ in Rhodobacter sphaeroides.

de la Mora J, Osorio-Valeriano M, González-Pedrajo B, Ballado T, Camarena L, Dreyfus G.

J Bacteriol. 2012 Sep;194(17):4513-20. doi: 10.1128/JB.00460-12. Epub 2012 Jun 15.

18.

Evolutionary origin of the Rhodobacter sphaeroides specialized RpoN sigma factors.

Domenzain C, Camarena L, Osorio A, Dreyfus G, Poggio S.

FEMS Microbiol Lett. 2012 Feb;327(2):93-102. doi: 10.1111/j.1574-6968.2011.02459.x. Epub 2011 Dec 8.

19.

In Rhodobacter sphaeroides, chemotactic operon 1 regulates rotation of the flagellar system 2.

Martínez-del Campo A, Ballado T, Camarena L, Dreyfus G.

J Bacteriol. 2011 Dec;193(23):6781-6. doi: 10.1128/JB.05933-11. Epub 2011 Sep 23.

20.

Na(+)- and H(+)-dependent motility in the coral pathogen Vibrio shilonii.

González Y, Venegas D, Mendoza-Hernandez G, Camarena L, Dreyfus G.

FEMS Microbiol Lett. 2010 Nov;312(2):142-50.

21.

The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides.

Suaste-Olmos F, Domenzain C, Mireles-Rodríguez JC, Poggio S, Osorio A, Dreyfus G, Camarena L.

J Bacteriol. 2010 Dec;192(23):6230-9. doi: 10.1128/JB.00655-10. Epub 2010 Oct 1.

22.

Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing.

Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M.

PLoS Pathog. 2010 Apr 1;6(4):e1000834. doi: 10.1371/journal.ppat.1000834.

23.

Identification of the binding site of the {sigma}54 hetero-oligomeric FleQ/FleT activator in the flagellar promoters of Rhodobacter sphaeroides.

Peña-Sánchez J, Poggio S, Flores-Pérez U, Osorio A, Domenzain C, Dreyfus G, Camarena L.

Microbiology. 2009 May;155(Pt 5):1669-79. doi: 10.1099/mic.0.024455-0. Epub 2009 Apr 16.

PMID:
19372156
24.

Role of single-strand DNA 3'-5' exonuclease ExoI and nuclease SbcCD in stationary-phase mutation in Escherichia coli K-12.

Ramírez-Santos J, García-Mata V, Poggio S, Camarena L, Gómez-Eichelmann MC.

Arch Microbiol. 2009 Feb;191(2):185-90. doi: 10.1007/s00203-008-0441-z. Epub 2008 Nov 19.

PMID:
19018518
25.

Functional analysis of a large non-conserved region of FlgK (HAP1) from Rhodobacter sphaeroides.

Castillo DJ, Ballado T, Camarena L, Dreyfus G.

Antonie Van Leeuwenhoek. 2009 Jan;95(1):77-90. doi: 10.1007/s10482-008-9290-7. Epub 2008 Nov 12.

PMID:
19003427
26.

Chemotactic control of the two flagellar systems of Rhodobacter sphaeroides is mediated by different sets of CheY and FliM proteins.

del Campo AM, Ballado T, de la Mora J, Poggio S, Camarena L, Dreyfus G.

J Bacteriol. 2007 Nov;189(22):8397-401. Epub 2007 Sep 21.

27.

The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides.

de la Mora J, Ballado T, González-Pedrajo B, Camarena L, Dreyfus G.

J Bacteriol. 2007 Nov;189(22):7998-8004. Epub 2007 Sep 14.

28.

A complete set of flagellar genes acquired by horizontal transfer coexists with the endogenous flagellar system in Rhodobacter sphaeroides.

Poggio S, Abreu-Goodger C, Fabela S, Osorio A, Dreyfus G, Vinuesa P, Camarena L.

J Bacteriol. 2007 Apr;189(8):3208-16. Epub 2007 Feb 9.

29.
30.
31.

Biochemical study of multiple CheY response regulators of the chemotactic pathway of Rhodobacter sphaeroides.

Ferré A, De La Mora J, Ballado T, Camarena L, Dreyfus G.

J Bacteriol. 2004 Aug;186(15):5172-7.

32.

Characterization of the flgG operon of Rhodobacter sphaeroides WS8 and its role in flagellum biosynthesis.

González-Pedrajo B, de la Mora J, Ballado T, Camarena L, Dreyfus G.

Biochim Biophys Acta. 2002 Nov 13;1579(1):55-63.

PMID:
12401220
33.

The four different sigma(54) factors of Rhodobacter sphaeroides are not functionally interchangeable.

Poggio S, Osorio A, Dreyfus G, Camarena L.

Mol Microbiol. 2002 Oct;46(1):75-85.

34.

Digitization of photographic slides: simple, effective, fast, and inexpensive method.

Camarena LC, Guerrero MT.

Ann Plast Surg. 2002 Mar;48(3):323-7.

PMID:
11862041
35.

The nitrogen assimilation control (Nac) protein represses asnC and asnA transcription in Escherichia coli.

Poggio S, Domeinzain C, Osorio A, Camarena L.

FEMS Microbiol Lett. 2002 Jan 10;206(2):151-6.

36.

The N terminus of FliM is essential to promote flagellar rotation in Rhodobacter sphaeroides.

Poggio S, Osorio A, Corkidi G, Dreyfus G, Camarena L.

J Bacteriol. 2001 May;183(10):3142-8.

37.

The hook gene (flgE) is expressed from the flgBCDEF operon in Rhodobacter sphaeroides: study of an flgE mutant.

Ballado T, Camarena L, González-Pedrajo B, Silva-Herzog E, Dreyfus G.

J Bacteriol. 2001 Mar;183(5):1680-7.

38.

sigma(54) Promoters control expression of genes encoding the hook and basal body complex in Rhodobacter sphaeroides.

Poggio S, Aguilar C, Osorio A, González-Pedrajo B, Dreyfus G, Camarena L.

J Bacteriol. 2000 Oct;182(20):5787-92.

39.

The pseudomonas aeruginosa motR gene involved in regulation of bacterial motility.

Campos-García J, Nájera R, Camarena L, Soberón-Chávez G.

FEMS Microbiol Lett. 2000 Mar 1;184(1):57-62.

40.

Transcriptional repression of gdhA in Escherichia coli is mediated by the Nac protein.

Camarena L, Poggio S, García N, Osorio A.

FEMS Microbiol Lett. 1998 Oct 1;167(1):51-6.

41.

Response regulator output in bacterial chemotaxis.

Alon U, Camarena L, Surette MG, Aguera y Arcas B, Liu Y, Leibler S, Stock JB.

EMBO J. 1998 Aug 3;17(15):4238-48.

42.

The flagellar switch genes fliM and fliN of Rhodobacter sphaeroides are contained in a large flagellar gene cluster.

García N, Campos A, Osorio A, Poggio S, González-Pedrajo B, Camarena L, Dreyfus G.

J Bacteriol. 1998 Aug;180(15):3978-82.

43.

An IS4 insertion at the glnA control region of Escherichia coli creates a new promoter by providing the -35 region of its 3'-end.

Camarena L, Poggio S, Campos A, Bastarrachea F, Osorio A.

Plasmid. 1998;39(1):41-7.

PMID:
9473445
44.

Structural and genetic analysis of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control.

González-Pedrajo B, Ballado T, Campos A, Sockett RE, Camarena L, Dreyfus G.

J Bacteriol. 1997 Nov;179(21):6581-8.

46.

Nitrogen regulation in an Escherichia coli strain with a temperature sensitive glutamyl-tRNA synthetase.

Osorio AV, Camarena L, Salazar G, Noll-Louzada M, Bastarrachea F.

Mol Gen Genet. 1993 Jun;239(3):400-8.

PMID:
7686246
47.

Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon.

Velázquez L, Camarena L, Reyes JL, Bastarrachea F.

J Bacteriol. 1991 May;173(10):3261-4.

Supplemental Content

Loading ...
Support Center