Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

CORRECTION: The Cytochrome b6f Complex is not Involved in Cyanobacterial State Transitions.

Calzadilla PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, Wang Q, Kirilovsky D.

Plant Cell. 2019 Nov 27. pii: tpc.00912.2019. doi: 10.1105/tpc.19.00912. [Epub ahead of print] No abstract available.

2.

Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment.

Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodríguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI, Debat JH, Ruiz OA.

Front Plant Sci. 2019 Nov 4;10:1415. doi: 10.3389/fpls.2019.01415. eCollection 2019. Review.

3.

Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes.

Calzadilla PI, Muzzopappa F, Sétif P, Kirilovsky D.

Biochim Biophys Acta Bioenerg. 2019 Jun 1;1860(6):488-498. doi: 10.1016/j.bbabio.2019.04.004. Epub 2019 Apr 25.

PMID:
31029593
4.

The Cytochrome b 6 f Complex Is Not Involved in Cyanobacterial State Transitions.

Calzadilla PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, Wang Q, Kirilovsky D.

Plant Cell. 2019 Apr;31(4):911-931. doi: 10.1105/tpc.18.00916. Epub 2019 Mar 8.

5.

The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus.

Calzadilla PI, Vilas JM, Escaray FJ, Unrein F, Carrasco P, Ruiz OA.

Sci Rep. 2019 Jan 29;9(1):863. doi: 10.1038/s41598-018-37165-7.

6.

Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae.

Vilas JM, Romero FM, Rossi FR, Marina M, Maiale SJ, Calzadilla PI, Pieckenstain FL, Ruiz OA, Gárriz A.

J Plant Physiol. 2018 Dec;231:281-290. doi: 10.1016/j.jplph.2018.09.014. Epub 2018 Sep 27.

PMID:
30342327
7.

Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity.

Gazquez A, Vilas JM, Colman Lerner JE, Maiale SJ, Calzadilla PI, Menéndez AB, Rodríguez AA.

Plant Physiol Biochem. 2018 Jun;127:537-552. doi: 10.1016/j.plaphy.2018.04.035. Epub 2018 Apr 27.

PMID:
29723825
8.

The alkaline tolerance in Lotus japonicus is associated with mechanisms of iron acquisition and modification of the architectural pattern of the root.

Campestre MP, Antonelli C, Calzadilla PI, Maiale SJ, Rodríguez AA, Ruiz OA.

J Plant Physiol. 2016 Nov 1;206:40-48. doi: 10.1016/j.jplph.2016.09.005. Epub 2016 Sep 22.

PMID:
27688092
9.

Photosynthetic responses mediate the adaptation of two Lotus japonicus ecotypes to low temperature.

Calzadilla PI, Signorelli S, Escaray FJ, Menéndez AB, Monza J, Ruiz OA, Maiale SJ.

Plant Sci. 2016 Sep;250:59-68. doi: 10.1016/j.plantsci.2016.06.003. Epub 2016 Jun 3.

PMID:
27457984
10.

Transcriptome Response Mediated by Cold Stress in Lotus japonicus.

Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ.

Front Plant Sci. 2016 Mar 30;7:374. doi: 10.3389/fpls.2016.00374. eCollection 2016.

Supplemental Content

Loading ...
Support Center