Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Engineering Biomaterial Microenvironments to Promote Myelination in the Central Nervous System.

Unal DB, Caliari SR, Lampe KJ.

Brain Res Bull. 2019 Jul 12. pii: S0361-9230(19)30111-X. doi: 10.1016/j.brainresbull.2019.07.013. [Epub ahead of print] Review.

PMID:
31306690
2.

Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.

Tang JD, Caliari SR, Lampe KJ.

Biomacromolecules. 2018 Oct 8;19(10):3925-3935. doi: 10.1021/acs.biomac.8b00837. Epub 2018 Sep 19.

PMID:
30185029
3.

Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.

Gong Z, Szczesny SE, Caliari SR, Charrier EE, Chaudhuri O, Cao X, Lin Y, Mauck RL, Janmey PA, Burdick JA, Shenoy VB.

Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2686-E2695. doi: 10.1073/pnas.1716620115. Epub 2018 Mar 5.

4.

Mechanically dynamic PDMS substrates to investigate changing cell environments.

Yeh YC, Corbin EA, Caliari SR, Ouyang L, Vega SL, Truitt R, Han L, Margulies KB, Burdick JA.

Biomaterials. 2017 Nov;145:23-32. doi: 10.1016/j.biomaterials.2017.08.033. Epub 2017 Aug 17.

5.

N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells.

Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL.

Nat Mater. 2016 Dec;15(12):1297-1306. doi: 10.1038/nmat4725. Epub 2016 Aug 15.

6.

Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments.

Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA.

Biomaterials. 2016 Oct;103:314-323. doi: 10.1016/j.biomaterials.2016.06.061. Epub 2016 Jun 29.

7.

Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression.

Caliari SR, Perepelyuk M, Soulas EM, Lee GY, Wells RG, Burdick JA.

Integr Biol (Camb). 2016 Jun 13;8(6):720-8. doi: 10.1039/c6ib00027d. Epub 2016 May 10.

8.

A practical guide to hydrogels for cell culture.

Caliari SR, Burdick JA.

Nat Methods. 2016 Apr 28;13(5):405-14. doi: 10.1038/nmeth.3839. Review.

9.

Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation.

Caliari SR, Perepelyuk M, Cosgrove BD, Tsai SJ, Lee GY, Mauck RL, Wells RG, Burdick JA.

Sci Rep. 2016 Feb 24;6:21387. doi: 10.1038/srep21387.

10.

CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche.

Yokohama-Tamaki T, Otsu K, Harada H, Shibata S, Obara N, Irie K, Taniguchi A, Nagasawa T, Aoki K, Caliari SR, Weisgerber DW, Harley BA.

Cell Tissue Res. 2015 Dec;362(3):633-42. doi: 10.1007/s00441-015-2248-y. Epub 2015 Aug 7.

11.

Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling.

Weisgerber DW, Caliari SR, Harley BA.

Biomater Sci. 2015 Mar;3(3):533-42. doi: 10.1039/C4BM00397G.

12.

Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering.

Caliari SR, Weisgerber DW, Grier WK, Mahmassani Z, Boppart MD, Harley BA.

Adv Healthc Mater. 2015 Apr 22;4(6):831-7. doi: 10.1002/adhm.201400809. Epub 2015 Jan 19.

13.

Collagen scaffold arrays for combinatorial screening of biophysical and biochemical regulators of cell behavior.

Caliari SR, Gonnerman EA, Grier WK, Weisgerber DW, Banks JM, Alsop AJ, Lee JS, Bailey RC, Harley BA.

Adv Healthc Mater. 2015 Jan 7;4(1):58-64. doi: 10.1002/adhm.201400252. Epub 2014 Jul 2.

14.

Structural and biochemical modification of a collagen scaffold to selectively enhance MSC tenogenic, chondrogenic, and osteogenic differentiation.

Caliari SR, Harley BA.

Adv Healthc Mater. 2014 Jul;3(7):1086-96. doi: 10.1002/adhm.201300646. Epub 2014 Feb 25.

15.

Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals.

Caliari SR, Harley BA.

Tissue Eng Part A. 2014 Sep;20(17-18):2463-72. doi: 10.1089/ten.TEA.2013.0400. Epub 2014 Mar 25.

17.

The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties.

Weisgerber DW, Kelkhoff DO, Caliari SR, Harley BA.

J Mech Behav Biomed Mater. 2013 Dec;28:26-36. doi: 10.1016/j.jmbbm.2013.07.016. Epub 2013 Jul 26.

18.

Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds.

Caliari SR, Harley BA.

Tissue Eng Part A. 2013 May;19(9-10):1100-12. doi: 10.1089/ten.TEA.2012.0497. Epub 2013 Jan 4.

19.

The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability.

Caliari SR, Weisgerber DW, Ramirez MA, Kelkhoff DO, Harley BA.

J Mech Behav Biomed Mater. 2012 Jul;11:27-40. doi: 10.1016/j.jmbbm.2011.12.004. Epub 2011 Dec 24.

20.

The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.

Caliari SR, Ramirez MA, Harley BA.

Biomaterials. 2011 Dec;32(34):8990-8. doi: 10.1016/j.biomaterials.2011.08.035. Epub 2011 Aug 30.

21.

The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity.

Caliari SR, Harley BA.

Biomaterials. 2011 Aug;32(23):5330-40. doi: 10.1016/j.biomaterials.2011.04.021. Epub 2011 May 7.

22.

The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography.

Martin TA, Caliari SR, Williford PD, Harley BA, Bailey RC.

Biomaterials. 2011 Jun;32(16):3949-57. doi: 10.1016/j.biomaterials.2011.02.018.

Supplemental Content

Loading ...
Support Center