Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors.

Thompson M, Bixby R, Dalton R, Vandenburg A, Calarco JA, Norris AD.

Elife. 2019 Jul 19;8. pii: e46726. doi: 10.7554/eLife.46726.

2.

Imaging whole nervous systems: insights into behavior from worms to fish.

Calarco JA, Samuel ADT.

Nat Methods. 2019 Jan;16(1):14-15. doi: 10.1038/s41592-018-0276-8. No abstract available.

PMID:
30573822
3.

Genome-wide CRISPR-Cas9 Interrogation of Splicing Networks Reveals a Mechanism for Recognition of Autism-Misregulated Neuronal Microexons.

Gonatopoulos-Pournatzis T, Wu M, Braunschweig U, Roth J, Han H, Best AJ, Raj B, Aregger M, O'Hanlon D, Ellis JD, Calarco JA, Moffat J, Gingras AC, Blencowe BJ.

Mol Cell. 2018 Nov 1;72(3):510-524.e12. doi: 10.1016/j.molcel.2018.10.008.

PMID:
30388412
4.

Synthetic Genetic Interaction (CRISPR-SGI) Profiling in Caenorhabditis elegans.

Calarco JA, Norris AD.

Bio Protoc. 2018 Mar 5;8(5). pii: e2756. doi: 10.21769/BioProtoc.2756.

5.

An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation.

Gracida X, Dion MF, Harris G, Zhang Y, Calarco JA.

Cell Rep. 2017 Dec 12;21(11):3089-3101. doi: 10.1016/j.celrep.2017.11.042.

6.

CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness.

Norris AD, Gracida X, Calarco JA.

Elife. 2017 Jul 18;6. pii: e28129. doi: 10.7554/eLife.28129.

7.

Cell type-specific transcriptome profiling in C. elegans using the Translating Ribosome Affinity Purification technique.

Gracida X, Calarco JA.

Methods. 2017 Aug 15;126:130-137. doi: 10.1016/j.ymeth.2017.06.023. Epub 2017 Jun 23.

PMID:
28648677
8.

Correction: Neuroendocrine modulation sustains the C. elegans forward motor state.

Lim M, Chitturi J, Laskova V, Meng J, Findeis D, Wiekenberg A, Mulcahy B, Luo L, Li Y, Lu Y, Hung W, Qu Y, Ho C, Holmyard D, Ji N, McWhirter RD, Samuel AD, Miller DM, Schnabel R, Calarco JA, Zhen M.

Elife. 2017 Mar 8;6. pii: e26528. doi: 10.7554/eLife.26528. No abstract available.

9.

Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans.

Lee KS, Iwanir S, Kopito RB, Scholz M, Calarco JA, Biron D, Levine E.

Nat Commun. 2017 Feb 1;8:14221. doi: 10.1038/ncomms14221.

10.

Neuroendocrine modulation sustains the C. elegans forward motor state.

Lim MA, Chitturi J, Laskova V, Meng J, Findeis D, Wiekenberg A, Mulcahy B, Luo L, Li Y, Lu Y, Hung W, Qu Y, Ho CY, Holmyard D, Ji N, McWhirter R, Samuel AD, Miller DM, Schnabel R, Calarco JA, Zhen M.

Elife. 2016 Nov 18;5. pii: e19887. doi: 10.7554/eLife.19887. Erratum in: Elife. 2017 Mar 08;6:.

11.

Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System.

Gracida X, Norris AD, Calarco JA.

Adv Exp Med Biol. 2016;907:229-61. doi: 10.1007/978-3-319-29073-7_10.

PMID:
27256389
12.

Creating Genome Modifications in C. elegans Using the CRISPR/Cas9 System.

Calarco JA, Friedland AE.

Methods Mol Biol. 2015;1327:59-74. doi: 10.1007/978-1-4939-2842-2_6.

PMID:
26423968
13.

Efficient Genome Editing in Caenorhabditis elegans with a Toolkit of Dual-Marker Selection Cassettes.

Norris AD, Kim HM, Colaiácovo MP, Calarco JA.

Genetics. 2015 Oct;201(2):449-58. doi: 10.1534/genetics.115.180679. Epub 2015 Jul 30.

14.

EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans.

Shen Y, Zhang J, Calarco JA, Zhang Y.

J Neurosci. 2014 Oct 1;34(40):13364-70. doi: 10.1523/JNEUROSCI.0230-14.2014.

15.

A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types.

Norris AD, Gao S, Norris ML, Ray D, Ramani AK, Fraser AG, Morris Q, Hughes TR, Zhen M, Calarco JA.

Mol Cell. 2014 Jun 19;54(6):946-59. doi: 10.1016/j.molcel.2014.05.004. Epub 2014 Jun 5.

16.

Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system.

Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiácovo MP.

Genetics. 2013 Nov;195(3):1181-5. doi: 10.1534/genetics.113.156075. Epub 2013 Aug 26.

17.

Heritable genome editing in C. elegans via a CRISPR-Cas9 system.

Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA.

Nat Methods. 2013 Aug;10(8):741-3. doi: 10.1038/nmeth.2532. Epub 2013 Jun 30.

18.

'Cryptic' exons reveal some of their secrets.

Calarco JA.

Elife. 2013 Jan 22;2:e00476. doi: 10.7554/eLife.00476.

19.

Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function.

Norris AD, Calarco JA.

Front Neurosci. 2012 Aug 21;6:122. doi: 10.3389/fnins.2012.00122. eCollection 2012.

20.

Tissue-specific alternative splicing remodels protein-protein interaction networks.

Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Wang X, Pan Q, O'Hanlon D, Kim PM, Wrana JL, Blencowe BJ.

Mol Cell. 2012 Jun 29;46(6):884-92. doi: 10.1016/j.molcel.2012.05.037.

21.

Releasing the inner inhibition for axon regeneration.

Po MD, Calarco JA, Zhen M.

Neuron. 2012 Jan 26;73(2):207-9. doi: 10.1016/j.neuron.2012.01.002.

22.

Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts.

Calarco JA, Zhen M, Blencowe BJ.

RNA. 2011 May;17(5):775-91. doi: 10.1261/rna.2603911. Epub 2011 Mar 17. Review.

23.

Genome-wide analysis of alternative splicing in Caenorhabditis elegans.

Ramani AK, Calarco JA, Pan Q, Mavandadi S, Wang Y, Nelson AC, Lee LJ, Morris Q, Blencowe BJ, Zhen M, Fraser AG.

Genome Res. 2011 Feb;21(2):342-8. doi: 10.1101/gr.114645.110. Epub 2010 Dec 22.

24.

Deciphering the splicing code.

Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ.

Nature. 2010 May 6;465(7294):53-9. doi: 10.1038/nature09000.

PMID:
20445623
25.

A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300.

Khanna M, Van Bakel H, Tang X, Calarco JA, Babak T, Guo G, Emili A, Greenblatt JF, Hughes TR, Krogan NJ, Blencowe BJ.

RNA. 2009 Dec;15(12):2174-85. doi: 10.1261/rna.1790509. Epub 2009 Sep 29.

26.

Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein.

Calarco JA, Superina S, O'Hanlon D, Gabut M, Raj B, Pan Q, Skalska U, Clarke L, Gelinas D, van der Kooy D, Zhen M, Ciruna B, Blencowe BJ.

Cell. 2009 Sep 4;138(5):898-910. doi: 10.1016/j.cell.2009.06.012.

27.

Technologies for the global discovery and analysis of alternative splicing.

Calarco JA, Saltzman AL, Ip JY, Blencowe BJ.

Adv Exp Med Biol. 2007;623:64-84. Review.

PMID:
18380341
28.

Global analysis of alternative splicing differences between humans and chimpanzees.

Calarco JA, Xing Y, Cáceres M, Calarco JP, Xiao X, Pan Q, Lee C, Preuss TM, Blencowe BJ.

Genes Dev. 2007 Nov 15;21(22):2963-75. Epub 2007 Oct 31.

29.

The C2H2 zinc-finger protein SYD-9 is a putative posttranscriptional regulator for synaptic transmission.

Wang Y, Gracheva EO, Richmond J, Kawano T, Couto JM, Calarco JA, Vijayaratnam V, Jin Y, Zhen M.

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10450-10455. doi: 10.1073/pnas.0602073103. Epub 2006 Jun 27.

30.

Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.

Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR.

Am J Hum Genet. 2006 Jan;78(1):63-77. Epub 2005 Nov 16.

31.

Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo.

Rosonina E, Ip JY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ, Blencowe BJ.

Mol Cell Biol. 2005 Aug;25(15):6734-46.

Supplemental Content

Loading ...
Support Center