Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Cyclooxygenase-2 Inhibition Potentiates the Efficacy of Vascular Endothelial Growth Factor Blockade and Promotes an Immune Stimulatory Microenvironment in Preclinical Models of Pancreatic Cancer.

Zhang Y, Kirane A, Huang H, Sorrelle NB, Burrows FJ, Dellinger MT, Brekken RA.

Mol Cancer Res. 2019 Feb;17(2):348-355. doi: 10.1158/1541-7786.MCR-18-0427. Epub 2018 Oct 17.

PMID:
30333153
2.

Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myeloma and solid tumour patients.

Levin N, Spencer A, Harrison SJ, Chauhan D, Burrows FJ, Anderson KC, Reich SD, Richardson PG, Trikha M.

Br J Haematol. 2016 Sep;174(5):711-20. doi: 10.1111/bjh.14113. Epub 2016 May 9.

3.

Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier.

Di K, Lloyd GK, Abraham V, MacLaren A, Burrows FJ, Desjardins A, Trikha M, Bota DA.

Neuro Oncol. 2016 Jun;18(6):840-8. doi: 10.1093/neuonc/nov299. Epub 2015 Dec 17.

4.

Therapeutic potential of ERK5 targeting in triple negative breast cancer.

Ortiz-Ruiz MJ, Álvarez-Fernández S, Parrott T, Zaknoen S, Burrows FJ, Ocaña A, Pandiella A, Esparís-Ogando A.

Oncotarget. 2014 Nov 30;5(22):11308-18.

5.

Potent antimyeloma activity of a novel ERK5/CDK inhibitor.

Álvarez-Fernández S, Ortiz-Ruiz MJ, Parrott T, Zaknoen S, Ocio EM, San Miguel J, Burrows FJ, Esparís-Ogando A, Pandiella A.

Clin Cancer Res. 2013 May 15;19(10):2677-87. doi: 10.1158/1078-0432.CCR-12-2118. Epub 2013 Mar 26.

6.

EC144 is a potent inhibitor of the heat shock protein 90.

Shi J, Van de Water R, Hong K, Lamer RB, Weichert KW, Sandoval CM, Kasibhatla SR, Boehm MF, Chao J, Lundgren K, Timple N, Lough R, Ibanez G, Boykin C, Burrows FJ, Kehry MR, Yun TJ, Harning EK, Ambrose C, Thompson J, Bixler SA, Dunah A, Snodgrass-Belt P, Arndt J, Enyedy IJ, Li P, Hong VS, McKenzie A, Biamonte MA.

J Med Chem. 2012 Sep 13;55(17):7786-95. doi: 10.1021/jm300810x. Epub 2012 Aug 31.

PMID:
22938030
7.

Apricoxib, a novel inhibitor of COX-2, markedly improves standard therapy response in molecularly defined models of pancreatic cancer.

Kirane A, Toombs JE, Ostapoff K, Carbon JG, Zaknoen S, Braunfeld J, Schwarz RE, Burrows FJ, Brekken RA.

Clin Cancer Res. 2012 Sep 15;18(18):5031-42. doi: 10.1158/1078-0432.CCR-12-0453. Epub 2012 Jul 24.

8.

Apricoxib upregulates 15-PGDH and PGT in tobacco-related epithelial malignancies.

St John MA, Wang G, Luo J, Dohadwala M, Hu D, Lin Y, Dennis M, Lee JM, Elashoff D, Lawhon T, Zaknoen SL, Burrows FJ, Dubinett SM.

Br J Cancer. 2012 Aug 7;107(4):707-12. doi: 10.1038/bjc.2012.203. Epub 2012 Jul 24.

9.

Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

Kirane A, Toombs JE, Larsen JE, Ostapoff KT, Meshaw KR, Zaknoen S, Brekken RA, Burrows FJ.

Carcinogenesis. 2012 Sep;33(9):1639-46. doi: 10.1093/carcin/bgs195. Epub 2012 Jun 7.

10.

Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and sensitizes Hodgkin's lymphoma cells for natural killer cell-mediated cytotoxicity.

Böll B, Eltaib F, Reiners KS, von Tresckow B, Tawadros S, Simhadri VR, Burrows FJ, Lundgren K, Hansen HP, Engert A, von Strandmann EP.

Clin Cancer Res. 2009 Aug 15;15(16):5108-16. doi: 10.1158/1078-0432.CCR-09-0213. Epub 2009 Aug 11.

11.

BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90.

Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC, McKenzie A, Friedman J, Scannevin R, Kamal A, Hong K, Kasibhatla SR, Boehm MF, Burrows FJ.

Mol Cancer Ther. 2009 Apr;8(4):921-9. doi: 10.1158/1535-7163.MCT-08-0758.

12.

Rationally designed high-affinity 2-amino-6-halopurine heat shock protein 90 inhibitors that exhibit potent antitumor activity.

Kasibhatla SR, Hong K, Biamonte MA, Busch DJ, Karjian PL, Sensintaffar JL, Kamal A, Lough RE, Brekken J, Lundgren K, Grecko R, Timony GA, Ran Y, Mansfield R, Fritz LC, Ulm E, Burrows FJ, Boehm MF.

J Med Chem. 2007 Jun 14;50(12):2767-78. Epub 2007 May 8.

PMID:
17488003
13.

The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis.

Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P, Kamal A, Burrows FJ, Fritz LC, Feinstein DL.

J Neurochem. 2006 Dec;99(5):1351-62. Epub 2006 Oct 25.

14.

7'-substituted benzothiazolothio- and pyridinothiazolothio-purines as potent heat shock protein 90 inhibitors.

Zhang L, Fan J, Vu K, Hong K, Le Brazidec JY, Shi J, Biamonte M, Busch DJ, Lough RE, Grecko R, Ran Y, Sensintaffar JL, Kamal A, Lundgren K, Burrows FJ, Mansfield R, Timony GA, Ulm EH, Kasibhatla SR, Boehm MF.

J Med Chem. 2006 Aug 24;49(17):5352-62.

PMID:
16913725
15.

Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors.

Kang J, Kamal A, Burrows FJ, Evers BM, Chung DH.

Anticancer Res. 2006 May-Jun;26(3A):1903-8.

16.

Orally active purine-based inhibitors of the heat shock protein 90.

Biamonte MA, Shi J, Hong K, Hurst DC, Zhang L, Fan J, Busch DJ, Karjian PL, Maldonado AA, Sensintaffar JL, Yang YC, Kamal A, Lough RE, Lundgren K, Burrows FJ, Timony GA, Boehm MF, Kasibhatla SR.

J Med Chem. 2006 Jan 26;49(2):817-28.

PMID:
16420067
17.
18.

Hsp90 inhibitors as selective anticancer drugs.

Kamal A, Burrows FJ.

Discov Med. 2004 Oct;4(23):277-80.

19.

Therapeutic and diagnostic implications of Hsp90 activation.

Kamal A, Boehm MF, Burrows FJ.

Trends Mol Med. 2004 Jun;10(6):283-90. Review.

PMID:
15177193
20.

A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.

Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ.

Nature. 2003 Sep 25;425(6956):407-10.

21.

Suicide gene therapy with Herpes simplex virus thymidine kinase and ganciclovir is enhanced with connexins to improve gap junctions and bystander effects.

Nicholas TW, Read SB, Burrows FJ, Kruse CA.

Histol Histopathol. 2003 Apr;18(2):495-507. doi: 10.14670/HH-18.495. Review.

PMID:
12647801
22.

Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells.

Burrows FJ, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, Read SB, Nicholas T, Kruse CA.

Cancer Gene Ther. 2002 Jan;9(1):87-95.

23.

Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype.

Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH.

Curr Biol. 2000 Nov 2;10(21):1319-28.

24.

Purified herpes simplex thymidine kinase retroviral particles. II. Influence of clinical parameters and bystander killing mechanisms.

Kruse CA, Lamb C, Hogan S, Smiley WR, Kleinschmidt-Demasters BK, Burrows FJ.

Cancer Gene Ther. 2000 Jan;7(1):118-27.

25.

Establishment of parameters for optimal transduction efficiency and antitumor effects with purified high-titer HSV-TK retroviral vector in established solid tumors.

Smiley WR, Laubert B, Howard BD, Ibañez C, Fong TC, Summers WS, Burrows FJ.

Hum Gene Ther. 1997 May 20;8(8):965-77.

PMID:
9195219
26.

Purified herpes simplex thymidine kinase Retrovector particles. I. In vitro characterization, in situ transduction efficiency, and histopathological analyses of gene therapy-treated brain tumors.

Kruse CA, Roper MD, Kleinschmidt-DeMasters BK, Banuelos SJ, Smiley WR, Robbins JM, Burrows FJ.

Cancer Gene Ther. 1997 Mar-Apr;4(2):118-28.

PMID:
9080121
27.

Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy.

Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES, Thorpe PE.

Clin Cancer Res. 1995 Dec;1(12):1623-34.

28.

Antibody-directed targeting of the vasculature of solid tumors.

Thorpe PE, Burrows FJ.

Breast Cancer Res Treat. 1995;36(2):237-51. Review.

PMID:
8534871
29.

Vascular targeting--a new approach to the therapy of solid tumors.

Burrows FJ, Thorpe PE.

Pharmacol Ther. 1994 Oct;64(1):155-74. Review.

PMID:
7846113
30.

Potent antitumor effects of an antitumor endothelial cell immunotoxin in a murine vascular targeting model.

Burrows FJ, Overholser JP, Thorpe PE.

Cell Biophys. 1994;24-25:15-25.

PMID:
7736519
31.

Cytotoxicity of a novel anti-ICAM-1 immunotoxin on human myeloma cell lines.

Huang YW, Burrows FJ, Vitetta ES.

Hybridoma. 1993 Dec;12(6):661-75.

PMID:
7904588
32.

Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature.

Burrows FJ, Thorpe PE.

Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8996-9000.

33.

A murine model for antibody-directed targeting of vascular endothelial cells in solid tumors.

Burrows FJ, Watanabe Y, Thorpe PE.

Cancer Res. 1992 Nov 1;52(21):5954-62.

34.

Influence of tumor-derived interleukin 1 on melanoma-endothelial cell interactions in vitro.

Burrows FJ, Haskard DO, Hart IR, Marshall JF, Selkirk S, Poole S, Thorpe PE.

Cancer Res. 1991 Sep 15;51(18):4768-75.

35.

Class I MHC antigens on rat placental trophoblast and yolk sac fetal membrane.

Billington WD, Burrows FJ.

Transplant Proc. 1989 Feb;21(1 Pt 1):555-6. No abstract available.

PMID:
2705229
36.

The rat placenta expresses paternal class I major histocompatibility antigens.

Billington WD, Burrows FJ.

J Reprod Immunol. 1986 Jul;9(2):155-60.

PMID:
3528478

Supplemental Content

Loading ...
Support Center