Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 154

1.

Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury.

Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB.

Biomaterials. 2018 Sep;177:176-185. doi: 10.1016/j.biomaterials.2018.05.049. Epub 2018 May 28.

PMID:
29929081
2.

Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro.

Wu S, Chen MS, Maurel P, Lee YS, Bunge MB, Arinzeh TL.

J Neural Eng. 2018 Oct;15(5):056010. doi: 10.1088/1741-2552/aac77f. Epub 2018 May 24.

PMID:
29794323
3.

Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

Lee YS, Funk LH, Lee JK, Bunge MB.

Neural Regen Res. 2018 Apr;13(4):684-691. doi: 10.4103/1673-5374.230295.

4.

A Culture Model to Study Neuron-Schwann Cell-Astrocyte Interactions.

Cerqueira SR, Lee YS, Bunge MB.

Methods Mol Biol. 2018;1739:269-279. doi: 10.1007/978-1-4939-7649-2_17.

PMID:
29546713
5.

Preservation, Sectioning, and Staining of Schwann Cell Cultures for Transmission Electron Microscopy Analysis.

Almeida VW, Bates ML, Bunge MB.

Methods Mol Biol. 2018;1739:195-212. doi: 10.1007/978-1-4939-7649-2_13.

PMID:
29546709
6.

Culture and Expansion of Rodent and Porcine Schwann Cells for Preclinical Animal Studies.

Brooks AE, Athauda G, Bunge MB, Khan A.

Methods Mol Biol. 2018;1739:111-126. doi: 10.1007/978-1-4939-7649-2_7.

PMID:
29546703
7.
8.

From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials.

Bunge MB, Monje PV, Khan A, Wood PM.

Prog Brain Res. 2017;231:107-133. doi: 10.1016/bs.pbr.2016.12.012. Epub 2017 Mar 31.

PMID:
28554394
9.

Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection.

Lee YS, Wu S, Arinzeh TL, Bunge MB.

Biotechnol Bioeng. 2017 Feb;114(2):444-456. doi: 10.1002/bit.26088. Epub 2016 Sep 26.

PMID:
27570167
10.

Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.

Funk LH, Hackett AR, Bunge MB, Lee JK.

J Neuroinflammation. 2016 Apr 20;13(1):87. doi: 10.1186/s12974-016-0552-4.

11.

The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity.

Harrison BJ, Venkat G, Lamb JL, Hutson TH, Drury C, Rau KK, Bunge MB, Mendell LM, Gage FH, Johnson RD, Hill CE, Rouchka EC, Moon LD, Petruska JC.

J Neurosci. 2016 Apr 13;36(15):4259-75. doi: 10.1523/JNEUROSCI.2423-15.2016.

12.

Overexpression of the Fibroblast Growth Factor Receptor 1 (FGFR1) in a Model of Spinal Cord Injury in Rats.

Haenzi B, Gers-Barlag K, Akhoundzadeh H, Hutson TH, Menezes SC, Bunge MB, Moon LD.

PLoS One. 2016 Mar 25;11(3):e0150541. doi: 10.1371/journal.pone.0150541. eCollection 2016.

13.

Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies.

Bunge MB.

J Physiol. 2016 Jul 1;594(13):3533-8. doi: 10.1113/JP271531. Epub 2016 May 10. Review.

14.

Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model.

Harrison BJ, Venkat G, Hutson T, Rau KK, Bunge MB, Mendell LM, Gage FH, Johnson RD, Hill C, Rouchka EC, Moon L, Petruska JC.

Genom Data. 2015 Oct 23;6:249-52. doi: 10.1016/j.gdata.2015.10.005. eCollection 2015 Dec.

15.

Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury.

Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C, Brook G, Dobrindt K, Peitz M, Brüstle O, Norenberg MD, Blesch A, Weidner N, Bunge MB, Bixby JL, Bradke F.

Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958. Epub 2015 Mar 12.

16.

MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.

Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB.

PLoS One. 2015 Mar 9;10(3):e0118918. doi: 10.1371/journal.pone.0118918. eCollection 2015.

17.

Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.

Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB.

Rev Neurosci. 2015;26(2):121-8. doi: 10.1515/revneuro-2014-0068. Review.

PMID:
25581750
18.

categoryCompare, an analytical tool based on feature annotations.

Flight RM, Harrison BJ, Mohammad F, Bunge MB, Moon LD, Petruska JC, Rouchka EC.

Front Genet. 2014 Apr 29;5:98. doi: 10.3389/fgene.2014.00098. eCollection 2014.

19.

Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury.

Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, Ozawa H, Itoi E, Pearse DD, Bunge MB.

J Neurosci. 2014 Jan 29;34(5):1838-55. doi: 10.1523/JNEUROSCI.2661-13.2014.

20.

Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

Williams RR, Henao M, Pearse DD, Bunge MB.

Cell Transplant. 2015;24(1):115-31. doi: 10.3727/096368913X674657. Epub 2013 Oct 22.

21.

A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury.

Enomoto M, Bunge MB, Tsoulfas P.

Exp Neurol. 2013 Oct;248:170-82. doi: 10.1016/j.expneurol.2013.06.013. Epub 2013 Jun 20.

PMID:
23792206
22.

Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury - how much is enough?

Kwon BK, Soril LJ, Bacon M, Beattie MS, Blesch A, Bresnahan JC, Bunge MB, Dunlop SA, Fehlings MG, Ferguson AR, Hill CE, Karimi-Abdolrezaee S, Lu P, McDonald JW, Müller HW, Oudega M, Rosenzweig ES, Reier PJ, Silver J, Sykova E, Xu XM, Guest JD, Tetzlaff W.

Exp Neurol. 2013 Oct;248:30-44. doi: 10.1016/j.expneurol.2013.05.012. Epub 2013 May 29. Erratum in: Exp Neurol. 2013 Oct;248:299-300.

PMID:
23727091
23.

Schwann cell transplantation: a repair strategy for spinal cord injury?

Wiliams RR, Bunge MB.

Prog Brain Res. 2012;201:295-312. doi: 10.1016/B978-0-444-59544-7.00014-7. Review.

PMID:
23186720
24.

Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

Flora G, Joseph G, Patel S, Singh A, Bleicher D, Barakat DJ, Louro J, Fenton S, Garg M, Bunge MB, Pearse DD.

Cell Transplant. 2013;22(12):2203-17. doi: 10.3727/096368912X658872. Epub 2012 Nov 8.

PMID:
23146351
25.

Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury.

Bunge MB, Wood PM.

Handb Clin Neurol. 2012;109:523-40. doi: 10.1016/B978-0-444-52137-8.00032-2. Review.

PMID:
23098734
26.

Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia.

Gámez Sazo RE, Maenaka K, Gu W, Wood PM, Bunge MB.

Biomaterials. 2012 Nov;33(33):8529-39. doi: 10.1016/j.biomaterials.2012.07.028. Epub 2012 Aug 17.

27.

The actin-severing protein cofilin is downstream of neuregulin signaling and is essential for Schwann cell myelination.

Sparrow N, Manetti ME, Bott M, Fabianac T, Petrilli A, Bates ML, Bunge MB, Lambert S, Fernandez-Valle C.

J Neurosci. 2012 Apr 11;32(15):5284-97. doi: 10.1523/JNEUROSCI.6207-11.2012.

28.

Nuclear factor-κB activation in Schwann cells regulates regeneration and remyelination.

Morton PD, Johnstone JT, Ramos AY, Liebl DJ, Bunge MB, Bethea JR.

Glia. 2012 Apr;60(4):639-50. doi: 10.1002/glia.22297. Epub 2012 Jan 24.

29.

The assessment of adeno-associated vectors as potential intrinsic treatments for brainstem axon regeneration.

Williams RR, Pearse DD, Tresco PA, Bunge MB.

J Gene Med. 2012 Jan;14(1):20-34. doi: 10.1002/jgm.1628.

30.
31.

Anti-CD11d monoclonal antibody treatment for rat spinal cord compression injury.

Hurtado A, Marcillo A, Frydel B, Bunge MB, Bramlett HM, Dietrich WD.

Exp Neurol. 2012 Feb;233(2):606-11. doi: 10.1016/j.expneurol.2010.11.015. Epub 2010 Dec 9.

32.

Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons.

Hill CE, Harrison BJ, Rau KK, Hougland MT, Bunge MB, Mendell LM, Petruska JC.

J Pain. 2010 Nov;11(11):1066-73. doi: 10.1016/j.jpain.2010.02.001. Epub 2010 Jun 2.

33.

A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord.

Hill CE, Guller Y, Raffa SJ, Hurtado A, Bunge MB.

J Neurotrauma. 2010 Sep;27(9):1685-95. doi: 10.1089/neu.2010.1272.

34.

Rapid assessment of internodal myelin integrity in central nervous system tissue.

Kirschner DA, Avila RL, Gamez Sazo RE, Luoma A, Enzmann GU, Agrawal D, Inouye H, Bunge MB, Kocsis J, Peters A, Whittemore SR.

J Neurosci Res. 2010 Mar;88(4):712-21. doi: 10.1002/jnr.22241.

35.

Brain-derived neurotrophic factor released from engineered mesenchymal stem cells attenuates glutamate- and hydrogen peroxide-mediated death of staurosporine-differentiated RGC-5 cells.

Harper MM, Adamson L, Blits B, Bunge MB, Grozdanic SD, Sakaguchi DS.

Exp Eye Res. 2009 Oct;89(4):538-48. doi: 10.1016/j.exer.2009.05.013. Epub 2009 Jun 12.

36.

Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord.

Fortun J, Hill CE, Bunge MB.

Neurosci Lett. 2009 Jun 12;456(3):124-32. doi: 10.1016/j.neulet.2008.08.092. Epub 2009 Jan 17. Review. No abstract available.

37.

Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI.

Fortun J, Puzis R, Pearse DD, Gage FH, Bunge MB.

J Neurotrauma. 2009 Jul;26(7):941-53. doi: 10.1089/neu.2008-0807.

PMID:
19275471
38.

Non-antagonistic relationship between mitogenic factors and cAMP in adult Schwann cell re-differentiation.

Monje PV, Rendon S, Athauda G, Bates M, Wood PM, Bunge MB.

Glia. 2009 Jul;57(9):947-61. doi: 10.1002/glia.20819.

39.

A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model.

Pinzon A, Marcillo A, Quintana A, Stamler S, Bunge MB, Bramlett HM, Dietrich WD.

Brain Res. 2008 Dec 3;1243:146-51. doi: 10.1016/j.brainres.2008.09.047. Epub 2008 Sep 24.

40.
41.

A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury.

Pinzon A, Marcillo A, Pabon D, Bramlett HM, Bunge MB, Dietrich WD.

Exp Neurol. 2008 Sep;213(1):129-36. doi: 10.1016/j.expneurol.2008.05.018. Epub 2008 Jul 14.

42.

Transduced Schwann cells promote axon growth and myelination after spinal cord injury.

Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB.

Exp Neurol. 2007 Oct;207(2):203-17. Epub 2007 Jul 13.

43.

Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery.

Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB.

Glia. 2007 Jul;55(9):976-1000.

PMID:
17526000
44.

Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?

Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR.

Nat Med. 2007 May;13(5):561-6. No abstract available.

45.

Age-related differences in the local cellular and molecular responses to injury in developing spinal cord of the opossum, Monodelphis domestica.

Lane MA, Truettner JS, Brunschwig JP, Gomez A, Bunge MB, Dietrich WD, Dziegielewska KM, Ek CJ, Vandeberg JL, Saunders NR.

Eur J Neurosci. 2007 Mar;25(6):1725-42.

PMID:
17432961
47.

Invariant mantling of growth cones by Schwann cell precursors characterize growing peripheral nerve fronts.

Wanner IB, Mahoney J, Jessen KR, Wood PM, Bates M, Bunge MB.

Glia. 2006 Oct;54(5):424-38.

PMID:
16886207
48.

Motor enrichment sustains hindlimb movement recovered after spinal cord injury and glial transplantation.

Moon LD, Leasure JL, Gage FH, Bunge MB.

Restor Neurol Neurosci. 2006;24(3):147-61.

PMID:
16873970
49.

Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord.

Casella GT, Bunge MB, Wood PM.

Exp Neurol. 2006 Nov;202(1):8-20. Epub 2006 Jul 26.

PMID:
16872600
50.

Direct gene therapy for repair of the spinal cord.

Blits B, Bunge MB.

J Neurotrauma. 2006 Mar-Apr;23(3-4):508-20. Review.

PMID:
16629633

Supplemental Content

Loading ...
Support Center