Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue.

Sundberg CW, Hunter SK, Bundle MW.

J Appl Physiol (1985). 2017 Jan 1;122(1):130-141. doi: 10.1152/japplphysiol.00468.2016. Epub 2016 Nov 17.

2.

Design and testing of a high-speed treadmill to measure ground reaction forces at the limit of human gait.

Bundle MW, Powell MO, Ryan LJ.

Med Eng Phys. 2015 Sep;37(9):892-7. doi: 10.1016/j.medengphy.2015.04.009. Epub 2015 Jul 2.

PMID:
26143150
3.

Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.

Sundberg CW, Bundle MW.

Am J Physiol Regul Integr Comp Physiol. 2015 Jul 1;309(1):R51-61. doi: 10.1152/ajpregu.00356.2014. Epub 2015 Apr 15.

5.
6.

Sprint exercise performance: does metabolic power matter?

Bundle MW, Weyand PG.

Exerc Sport Sci Rev. 2012 Jul;40(3):174-82. doi: 10.1097/JES.0b013e318258e1c1. Review.

PMID:
22732427
7.

Instrumentation array for biomechanical reproducibility - biomed 2010.

Barrett SF, Bundle MW.

Biomed Sci Instrum. 2010;46:51-6.

PMID:
20467071
8.

Point: Artificial limbs do make artificially fast running speeds possible.

Weyand PG, Bundle MW.

J Appl Physiol (1985). 2010 Apr;108(4):1011-2; discussion 1014-5. doi: 10.1152/japplphysiol.01238.2009. No abstract available.

9.

The biological limits to running speed are imposed from the ground up.

Weyand PG, Sandell RF, Prime DN, Bundle MW.

J Appl Physiol (1985). 2010 Apr;108(4):950-61. doi: 10.1152/japplphysiol.00947.2009. Epub 2010 Jan 21.

10.

Oxygen uptake of flying budgerigars by V. A. Tucker.

Bundle MW.

J Exp Biol. 2009 Nov;212(Pt 22):3595-6. doi: 10.1242/jeb.029272. No abstract available.

11.

The fastest runner on artificial legs: different limbs, similar function?

Weyand PG, Bundle MW, McGowan CP, Grabowski A, Brown MB, Kram R, Herr H.

J Appl Physiol (1985). 2009 Sep;107(3):903-11. doi: 10.1152/japplphysiol.00174.2009. Epub 2009 Jun 18.

12.
13.

A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.

Bundle MW, Ernst CL, Bellizzi MJ, Wright S, Weyand PG.

Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1457-64. Epub 2006 Jul 13.

14.

Sprint performance-duration relationships are set by the fractional duration of external force application.

Weyand PG, Lin JE, Bundle MW.

Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R758-65. Epub 2005 Oct 27.

15.

Energetics of high-speed running: integrating classical theory and contemporary observations.

Weyand PG, Bundle MW.

Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R956-65. Epub 2004 Dec 2.

16.

Mechanics of wing-assisted incline running (WAIR).

Bundle MW, Dial KP.

J Exp Biol. 2003 Dec;206(Pt 24):4553-64.

17.

High-speed running performance: a new approach to assessment and prediction.

Bundle MW, Hoyt RW, Weyand PG.

J Appl Physiol (1985). 2003 Nov;95(5):1955-62.

18.

Bird maneuvering flight: blurred bodies, clear heads.

Warrick DR, Bundle MW, Dial KP.

Integr Comp Biol. 2002 Feb;42(1):141-8. doi: 10.1093/icb/42.1.141.

PMID:
21708703
19.

High-speed running performance is largely unaffected by hypoxic reductions in aerobic power.

Weyand PG, Lee CS, Martinez-Ruiz R, Bundle MW, Bellizzi MJ, Wright S.

J Appl Physiol (1985). 1999 Jun;86(6):2059-64.

Supplemental Content

Loading ...
Support Center