Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.

Chen J, Damiano DL, Lerner ZF, Bulea TC.

IEEE Int Conf Rehabil Robot. 2019 Jun;2019:778-783. doi: 10.1109/ICORR.2019.8779513.

PMID:
31374725
2.

Transcutaneous high-frequency alternating current for rapid reversible muscle force reduction below pain threshold.

Kim Y, Bulea TC, Park HS.

J Neural Eng. 2019 Oct 23;16(6):066013. doi: 10.1088/1741-2552/ab35ce.

PMID:
31344687
3.

Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.

Lerner ZF, Damiano DL, Bulea TC.

J Biomech. 2019 Apr 18;87:142-149. doi: 10.1016/j.jbiomech.2019.02.025. Epub 2019 Mar 7.

PMID:
30862380
4.

Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.

Bulea TC, Lerner ZF, Damiano DL.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:2801-2804. doi: 10.1109/EMBC.2018.8512799.

PMID:
30440983
5.
6.
7.

A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.

Lerner ZF, Damiano DL, Bulea TC.

Sci Transl Med. 2017 Aug 23;9(404). pii: eaam9145. doi: 10.1126/scitranslmed.aam9145. Epub 2017 Aug 23.

PMID:
28835518
8.

Exergaming with a pediatric exoskeleton: Facilitating rehabilitation and research in children with cerebral palsy.

Bulea TC, Lerner ZF, Gravunder AJ, Damiano DL.

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1087-1093. doi: 10.1109/ICORR.2017.8009394.

PMID:
28813966
9.

Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.

Lerner ZF, Damiano DL, Bulea TC.

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:491-497. doi: 10.1109/ICORR.2017.8009296.

PMID:
28813868
10.

Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: A systematic review.

Galey SA, Lerner ZF, Bulea TC, Zimbler S, Damiano DL.

Gait Posture. 2017 May;54:93-105. doi: 10.1016/j.gaitpost.2017.02.024. Epub 2017 Feb 24. Review.

PMID:
28279852
11.

Part 2: Adaptation of Gait Kinematics in Unilateral Cerebral Palsy Demonstrates Preserved Independent Neural Control of Each Limb.

Bulea TC, Stanley CJ, Damiano DL.

Front Hum Neurosci. 2017 Feb 13;11:50. doi: 10.3389/fnhum.2017.00050. eCollection 2017.

12.

Motor Learning Abilities Are Similar in Hemiplegic Cerebral Palsy Compared to Controls as Assessed by Adaptation to Unilateral Leg-Weighting during Gait: Part I.

Damiano DL, Stanley CJ, Bulea TC, Park HS.

Front Hum Neurosci. 2017 Feb 8;11:49. doi: 10.3389/fnhum.2017.00049. eCollection 2017.

13.

Novel Methods to Enhance Precision and Reliability in Muscle Synergy Identification during Walking.

Kim Y, Bulea TC, Damiano DL.

Front Hum Neurosci. 2016 Sep 15;10:455. eCollection 2016.

14.

A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.

Lerner ZF, Damiano DL, Park HS, Gravunder AJ, Bulea TC.

IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):650-659. doi: 10.1109/TNSRE.2016.2595501. Epub 2016 Jul 27.

PMID:
27479974
15.

Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses.

Lerner ZF, Damiano DL, Bulea TC.

IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):621-9. doi: 10.1109/TNSRE.2016.2550860. Epub 2016 Apr 14.

16.

A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.

Lerner ZF, Damiano DL, Bulea TC.

Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:2214-2217. doi: 10.1109/EMBC.2016.7591169.

PMID:
28324959
17.

Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking.

Bulea TC, Kim J, Damiano DL, Stanley CJ, Park HS.

Front Hum Neurosci. 2015 May 12;9:247. doi: 10.3389/fnhum.2015.00247. eCollection 2015.

18.

User-driven control increases cortical activity during treadmill walking: an EEG study.

Bulea TC, Jonghyun Kim, Damiano DL, Stanley CJ, Hyung-Soon Park.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2111-4. doi: 10.1109/EMBC.2014.6944033.

19.

Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses.

Foglyano KM, Kobetic R, To CS, Bulea TC, Schnellenberger JR, Audu ML, Nandor MJ, Quinn RD, Triolo RJ.

Appl Bionics Biomech. 2015;2015:205104. doi: 10.1155/2015/205104. Epub 2015 Mar 18.

20.

Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution.

Bulea TC, Prasad S, Kilicarslan A, Contreras-Vidal JL.

Front Neurosci. 2014 Nov 25;8:376. doi: 10.3389/fnins.2014.00376. eCollection 2014.

21.

Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility.

Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ.

J Rehabil Res Dev. 2014;51(7):1077-94. doi: 10.1682/JRRD.2013.12.0257.

22.

Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.

To CS, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ.

J Rehabil Res Dev. 2014;51(2):229-44. doi: 10.1682/JRRD.2012.10.0190.

23.

Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction.

Bulea TC, Prasad S, Kilicarslan A, Contreras-Vidal JL.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6341-4. doi: 10.1109/EMBC.2013.6611004.

24.

A clinical roadmap for brain--neural machine interfaces: trainees' perspectives on the 2013 International Workshop.

Liew SL, Agashe H, Bhagat N, Paek A, Bulea TC.

IEEE Pulse. 2013 Sep;4(5):44-8. doi: 10.1109/MPUL.2013.2271686. No abstract available.

25.

Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.

Bulea TC, Kilicarslan A, Ozdemir R, Paloski WH, Contreras-Vidal JL.

J Vis Exp. 2013 Jul 26;(77). doi: 10.3791/50602.

26.

Stance controlled knee flexion improves stimulation driven walking after spinal cord injury.

Bulea TC, Kobetic R, Audu ML, Triolo RJ.

J Neuroeng Rehabil. 2013 Jul 4;10:68. doi: 10.1186/1743-0003-10-68.

27.

Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis.

Bulea TC, Kobetic R, Audu ML, Schnellenberger JR, Triolo RJ.

IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):141-51. doi: 10.1109/TNSRE.2012.2227124. Epub 2012 Nov 15.

28.

Design and Experimental Evaluation of a Vertical Lift Walker for Sit-to-Stand Transition Assistance.

Bulea TC, Triolo RJ.

J Med Device. 2012 Mar;6(1):14504-NaN. Epub 2012 Mar 12.

29.

Restoration of stance phase knee flexion during walking after spinal cord injury using a variable impedance orthosis.

Bulea TC, Kobetic R, Triolo RJ.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:608-11. doi: 10.1109/IEMBS.2011.6090135.

30.

Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis.

To CS, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ.

J Rehabil Res Dev. 2011;48(7):839-50.

31.

Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury.

Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ.

J Rehabil Res Dev. 2009;46(3):447-62.

Supplemental Content

Loading ...
Support Center