Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 56

1.

Plant responses to rising vapor pressure deficit.

Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG.

New Phytol. 2020 Feb 17. doi: 10.1111/nph.16485. [Epub ahead of print] Review.

PMID:
32064613
2.

Trait multi-functionality in plant stress response.

Sack L, Buckley TN.

Integr Comp Biol. 2019 Dec 11. pii: icz152. doi: 10.1093/icb/icz152. [Epub ahead of print]

PMID:
31825509
3.

Rainfall drives variation in rates of change in intrinsic water use efficiency of tropical forests.

Adams MA, Buckley TN, Turnbull TL.

Nat Commun. 2019 Aug 14;10(1):3661. doi: 10.1038/s41467-019-11679-8.

4.

PARbars: Cheap, Easy to Build Ceptometers for Continuous Measurement of Light Interception in Plant Canopies.

Salter WT, Merchant AM, Gilbert ME, Buckley TN.

J Vis Exp. 2019 May 9;(147). doi: 10.3791/59447.

PMID:
31132041
5.

How do stomata respond to water status?

Buckley TN.

New Phytol. 2019 Oct;224(1):21-36. doi: 10.1111/nph.15899. Epub 2019 Jun 11. Review.

6.

The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces.

Buckley TN, Sack L.

Am J Bot. 2019 May;106(5):618-621. doi: 10.1002/ajb2.1282. Epub 2019 May 6. No abstract available.

7.

Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat.

Salter WT, Merchant AM, Richards RA, Trethowan R, Buckley TN.

J Exp Bot. 2019 May 9;70(10):2787-2796. doi: 10.1093/jxb/erz100.

8.

The response of mesophyll conductance to short- and long-term environmental conditions in chickpea genotypes.

Shrestha A, Buckley TN, Lockhart EL, Barbour MM.

AoB Plants. 2018 Dec 11;11(1):ply073. doi: 10.1093/aobpla/ply073. eCollection 2019 Feb.

9.

The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana.

Scoffoni C, Albuquerque C, Cochard H, Buckley TN, Fletcher LR, Caringella MA, Bartlett M, Brodersen CR, Jansen S, McElrone AJ, Sack L.

Plant Physiol. 2018 Dec;178(4):1584-1601. doi: 10.1104/pp.18.00743. Epub 2018 Oct 26.

10.

Embracing 3D Complexity in Leaf Carbon-Water Exchange.

Earles JM, Buckley TN, Brodersen CR, Busch FA, Cano FJ, Choat B, Evans JR, Farquhar GD, Harwood R, Huynh M, John GP, Miller ML, Rockwell FE, Sack L, Scoffoni C, Struik PC, Wu A, Yin X, Barbour MM.

Trends Plant Sci. 2019 Jan;24(1):15-24. doi: 10.1016/j.tplants.2018.09.005. Epub 2018 Oct 9. Review.

PMID:
30309727
11.

A multiplexed gas exchange system for increased throughput of photosynthetic capacity measurements.

Salter WT, Gilbert ME, Buckley TN.

Plant Methods. 2018 Sep 11;14:80. doi: 10.1186/s13007-018-0347-y. eCollection 2018.

12.

Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL.

Trends Plant Sci. 2018 Jun;23(6):539-550. doi: 10.1016/j.tplants.2018.02.009. Epub 2018 Mar 17. Review.

13.

Contrasting responses of crop legumes and cereals to nitrogen availability.

Adams MA, Buckley TN, Salter WT, Buchmann N, Blessing CH, Turnbull TL.

New Phytol. 2018 Mar;217(4):1475-1483. doi: 10.1111/nph.14918. Epub 2017 Nov 27.

14.

ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure.

Sack L, John GP, Buckley TN.

Plant Physiol. 2018 Jan;176(1):489-495. doi: 10.1104/pp.17.01097. Epub 2017 Oct 23. No abstract available.

15.

Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance.

Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G.

New Phytol. 2017 Dec;216(4):986-1001. doi: 10.1111/nph.14816. Epub 2017 Oct 2. Review.

16.

The Kok effect in Vicia faba cannot be explained solely by changes in chloroplastic CO2 concentration.

Buckley TN, Vice H, Adams MA.

New Phytol. 2017 Dec;216(4):1064-1071. doi: 10.1111/nph.14775. Epub 2017 Aug 31.

17.

A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C4 Photosynthesis.

Bellasio C, Quirk J, Buckley TN, Beerling DJ.

Plant Physiol. 2017 Sep;175(1):104-119. doi: 10.1104/pp.17.00666. Epub 2017 Jul 27.

18.

Tracking the origins of the Kok effect, 70 years after its discovery.

Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous K, Griffin KL, Way DA, Turnbull MH, Adams MA, Atkin OK, Bender M, Farquhar GD, Cornic G.

New Phytol. 2017 Apr;214(2):506-510. doi: 10.1111/nph.14527. No abstract available.

19.

The anatomical and compositional basis of leaf mass per area.

John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L.

Ecol Lett. 2017 Apr;20(4):412-425. doi: 10.1111/ele.12739. Epub 2017 Feb 14.

20.

The Sites of Evaporation within Leaves.

Buckley TN, John GP, Scoffoni C, Sack L.

Plant Physiol. 2017 Mar;173(3):1763-1782. doi: 10.1104/pp.16.01605. Epub 2017 Feb 2.

21.

Modeling Stomatal Conductance.

Buckley TN.

Plant Physiol. 2017 Jun;174(2):572-582. doi: 10.1104/pp.16.01772. Epub 2017 Jan 6. Review. No abstract available.

22.

Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett MK, Buckley TN, McElrone AJ, Sack L.

Plant Physiol. 2017 Feb;173(2):1197-1210. doi: 10.1104/pp.16.01643. Epub 2017 Jan 3.

23.

Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline.

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L.

New Phytol. 2017 Feb;213(3):1076-1092. doi: 10.1111/nph.14256. Epub 2016 Nov 11.

24.

Leaf water stable isotopes and water transport outside the xylem.

Barbour MM, Farquhar GD, Buckley TN.

Plant Cell Environ. 2017 Jun;40(6):914-920. doi: 10.1111/pce.12845. Epub 2016 Dec 14. Review.

PMID:
27739589
25.

Optimal plant water economy.

Buckley TN, Sack L, Farquhar GD.

Plant Cell Environ. 2017 Jun;40(6):881-896. doi: 10.1111/pce.12823. Epub 2016 Oct 17. Review.

PMID:
27644069
26.

Why are leaves hydraulically vulnerable?

Sack L, Buckley TN, Scoffoni C.

J Exp Bot. 2016 Sep;67(17):4917-9. doi: 10.1093/jxb/erw304. No abstract available.

27.

The Developmental Basis of Stomatal Density and Flux.

Sack L, Buckley TN.

Plant Physiol. 2016 Aug;171(4):2358-63. doi: 10.1104/pp.16.00476. Epub 2016 Jun 6. No abstract available.

28.

Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor.

Rodriguez-Dominguez CM, Buckley TN, Egea G, de Cires A, Hernandez-Santana V, Martorell S, Diaz-Espejo A.

Plant Cell Environ. 2016 Sep;39(9):2014-26. doi: 10.1111/pce.12774. Epub 2016 Jul 15.

29.

Stomatal responses to humidity: has the 'black box' finally been opened?

Buckley TN.

Plant Cell Environ. 2016 Mar;39(3):482-4. doi: 10.1111/pce.12651. Epub 2016 Jan 8. No abstract available.

30.

How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L.

New Phytol. 2015 Nov;208(3):736-49. doi: 10.1111/nph.13571. Epub 2015 Jul 22.

31.

How Does Leaf Anatomy Influence Water Transport outside the Xylem?

Buckley TN, John GP, Scoffoni C, Sack L.

Plant Physiol. 2015 Aug;168(4):1616-35. doi: 10.1104/pp.15.00731. Epub 2015 Jun 17.

32.

Partitioning changes in photosynthetic rate into contributions from different variables.

Buckley TN, Diaz-Espejo A.

Plant Cell Environ. 2015 Jun;38(6):1200-11. doi: 10.1111/pce.12459. Epub 2015 Feb 25.

33.

Reporting estimates of maximum potential electron transport rate.

Buckley TN, Diaz-Espejo A.

New Phytol. 2015 Jan;205(1):14-7. doi: 10.1111/nph.13018. Epub 2014 Sep 7. No abstract available.

34.

Anatomical and physiological regulation of post-fire carbon and water exchange in canopies of two resprouting Eucalyptus species.

Turnbull TL, Buckley TN, Barlow AM, Adams MA.

Oecologia. 2014 Oct;176(2):333-43. doi: 10.1007/s00442-014-3032-5. Epub 2014 Aug 10.

PMID:
25108550
35.

The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.

Buckley TN.

Plant Cell Environ. 2015 Jan;38(1):7-22. doi: 10.1111/pce.12372. Epub 2014 Jun 16.

36.

Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera).

Buckley TN, Martorell S, Diaz-Espejo A, Tomàs M, Medrano H.

Plant Cell Environ. 2014 Dec;37(12):2707-21. doi: 10.1111/pce.12343. Epub 2014 May 15.

37.

Stomatal optimisation in relation to atmospheric CO2.

Buckley TN, Schymanski SJ.

New Phytol. 2014 Jan;201(2):372-7. doi: 10.1111/nph.12552. Epub 2013 Oct 11. No abstract available.

38.

Modelling stomatal conductance in response to environmental factors.

Buckley TN, Mott KA.

Plant Cell Environ. 2013 Sep;36(9):1691-9. doi: 10.1111/pce.12140. Epub 2013 Jun 27. Review.

39.

The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis.

Buckley TN, Warren CR.

Photosynth Res. 2014 Feb;119(1-2):77-88. doi: 10.1007/s11120-013-9825-2. Epub 2013 Apr 23.

PMID:
23609621
40.

What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism?

Buckley TN, Cescatti A, Farquhar GD.

Plant Cell Environ. 2013 Aug;36(8):1547-63. doi: 10.1111/pce.12091. Epub 2013 Apr 17.

41.

Site-specific responses to short-term environmental variation are reflected in leaf and phloem-sap carbon isotopic abundance of field grown Eucalyptus globulus.

Merchant A, Buckley TN, Pfautsch S, Turnbull TL, Samsa GA, Adams MA.

Physiol Plant. 2012 Dec;146(4):448-59. doi: 10.1111/j.1399-3054.2012.01638.x. Epub 2012 May 29.

PMID:
22568657
42.

Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data.

Buckley TN, Turnbull TL, Adams MA.

Plant Cell Environ. 2012 Sep;35(9):1647-62. doi: 10.1111/j.1365-3040.2012.02515.x. Epub 2012 May 4.

43.

Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands.

Buckley TN, Turnbull TL, Pfautsch S, Adams MA.

Ecol Evol. 2011 Nov;1(3):435-50. doi: 10.1002/ece3.44.

44.

The role of bundle sheath extensions and life form in stomatal responses to leaf water status.

Buckley TN, Sack L, Gilbert ME.

Plant Physiol. 2011 Jun;156(2):962-73. doi: 10.1104/pp.111.175638. Epub 2011 Apr 1.

45.

An analytical model of non-photorespiratory CO₂release in the light and dark in leaves of C₃species based on stoichiometric flux balance.

Buckley TN, Adams MA.

Plant Cell Environ. 2011 Jan;34(1):89-112. doi: 10.1111/j.1365-3040.2010.02228.x. Epub 2010 Oct 7.

46.

Capacity of old trees to respond to environmental change.

Phillips NG, Buckley TN, Tissue DT.

J Integr Plant Biol. 2008 Nov;50(11):1355-64. doi: 10.1111/j.1744-7909.2008.00746.x. Review.

PMID:
19017123
47.

The role of stomatal acclimation in modelling tree adaptation to high CO2.

Buckley TN.

J Exp Bot. 2008;59(7):1951-61. Epub 2007 Nov 13.

PMID:
18000018
48.
49.

Dynamics of stomatal water relations following leaf excision.

Powles JE, Buckley TN, Nicotra AB, Farquhar GD.

Plant Cell Environ. 2006 May;29(5):981-92.

50.

Evidence for involvement of photosynthetic processes in the stomatal response to CO2.

Messinger SM, Buckley TN, Mott KA.

Plant Physiol. 2006 Feb;140(2):771-8. Epub 2006 Jan 11.

Supplemental Content

Loading ...
Support Center