Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 125

1.

A live-cell super-resolution technique demonstrated by imaging germinosomes in wild-type bacterial spores.

Breedijk RMP, Wen J, Krishnaswami V, Bernas T, Manders EMM, Setlow P, Vischer NOE, Brul S.

Sci Rep. 2020 Mar 24;10(1):5312. doi: 10.1038/s41598-020-62377-1.

2.

Vegetative Cell and Spore Proteomes of Clostridioides difficile Show Finite Differences and Reveal Potential Protein Markers.

Abhyankar WR, Zheng L, Brul S, de Koster CG, de Koning LJ.

J Proteome Res. 2019 Nov 1;18(11):3967-3976. doi: 10.1021/acs.jproteome.9b00413. Epub 2019 Oct 14.

3.

Visualization of Germinosomes and the Inner Membrane in Bacillus subtilis Spores.

Wen J, Pasman R, Manders EMM, Setlow P, Brul S.

J Vis Exp. 2019 Apr 15;(146). doi: 10.3791/59388.

PMID:
31033949
4.

Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli.

Hoeksema M, Jonker MJ, Brul S, Ter Kuile BH.

BMC Genomics. 2019 Apr 11;20(1):284. doi: 10.1186/s12864-019-5648-7.

5.

Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores.

Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S.

Food Microbiol. 2019 Aug;81:89-96. doi: 10.1016/j.fm.2018.03.006. Epub 2018 Mar 14. Review.

6.

Caloric restriction controls stationary phase survival through Protein Kinase A (PKA) and cytosolic pH.

Dolz-Edo L, van der Deen M, Brul S, Smits GJ.

Aging Cell. 2019 Jun;18(3):e12921. doi: 10.1111/acel.12921. Epub 2019 Feb 20.

7.

Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively.

Hoeksema M, Jonker MJ, Bel K, Brul S, Ter Kuile BH.

BMC Genomics. 2018 Dec 27;19(1):973. doi: 10.1186/s12864-018-5353-y.

8.

Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth.

Omardien S, Drijfhout JW, Zaat SA, Brul S.

Front Microbiol. 2018 Sep 26;9:2277. doi: 10.3389/fmicb.2018.02277. eCollection 2018.

9.

Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

Omardien S, Ter Beek A, Vischer N, Montijn R, Schuren F, Brul S.

Sci Rep. 2018 Jun 14;8(1):9128. doi: 10.1038/s41598-018-27529-4.

10.

Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer.

Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SAJ, Brul S.

Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2404-2415. doi: 10.1016/j.bbamem.2018.06.004. Epub 2018 Jun 11.

11.

Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response.

Omardien S, Drijfhout JW, van Veen H, Schachtschabel S, Riool M, Hamoen LW, Brul S, Zaat SAJ.

Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2416-2427. doi: 10.1016/j.bbamem.2018.06.005. Epub 2018 Jun 9.

12.

Correction to "Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach".

Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG.

J Proteome Res. 2018 Jul 6;17(7):2562. doi: 10.1021/acs.jproteome.8b00313. Epub 2018 Jun 1. No abstract available.

13.

Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics.

Hoeksema M, Brul S, Ter Kuile BH.

Antimicrob Agents Chemother. 2018 May 25;62(6). pii: e02354-17. doi: 10.1128/AAC.02354-17. Print 2018 Jun.

14.

"One-Pot" Sample Processing Method for Proteome-Wide Analysis of Microbial Cells and Spores.

Swarge BN, Roseboom W, Zheng L, Abhyankar WR, Brul S, de Koster CG, de Koning LJ.

Proteomics Clin Appl. 2018 Sep;12(5):e1700169. doi: 10.1002/prca.201700169. Epub 2018 Apr 16.

15.

Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach.

Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG.

J Proteome Res. 2018 Feb 2;17(2):903-917. doi: 10.1021/acs.jproteome.7b00732. Epub 2018 Jan 4. Erratum in: J Proteome Res. 2018 Jul 6;17(7):2562.

16.

Beyond the polymerase-γ theory: Production of ROS as a mode of NRTI-induced mitochondrial toxicity.

Smith RL, Tan JME, Jonker MJ, Jongejan A, Buissink T, Veldhuijzen S, van Kampen AHC, Brul S, van der Spek H.

PLoS One. 2017 Nov 2;12(11):e0187424. doi: 10.1371/journal.pone.0187424. eCollection 2017.

17.

Optimization of therapy against Pseudomonas aeruginosa with ceftazidime and meropenem using chemostats as model for infections.

Feng Y, Bakker RT, van Hest RM, Hodiamont CJ, Brul S, Schultsz C, Ter Kuile BH.

FEMS Microbiol Lett. 2017 Aug 1;364(14). doi: 10.1093/femsle/fnx142.

PMID:
28854670
18.

Erratum for Pandey et al., "Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells".

Pandey R, Vischer NOE, Smelt JPPM, van Beilen JWA, Ter Beek A, De Vos WH, Brul S, Manders EMM.

Appl Environ Microbiol. 2017 May 17;83(11). pii: e00861-17. doi: 10.1128/AEM.00861-17. Print 2017 Jun 1. No abstract available.

19.

RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress.

van Beilen J, Blohmke CJ, Folkerts H, de Boer R, Zakrzewska A, Kulik W, Vaz FM, Brul S, Ter Beek A.

Front Microbiol. 2016 Oct 21;7:1633. eCollection 2016.

20.

Special issue on 9th International Conference on Predictive Modelling in Food (Rio de Janeiro, Brazil).

Sant'Ana AS, Koutsoumanis K, Brul S, Pérez-Rodríguez F.

Int J Food Microbiol. 2017 Jan 2;240:1-2. doi: 10.1016/j.ijfoodmicro.2016.10.003. Epub 2016 Oct 6. No abstract available.

PMID:
27810223
22.

The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

Abhyankar WR, Kamphorst K, Swarge BN, van Veen H, van der Wel NN, Brul S, de Koster CG, de Koning LJ.

Front Microbiol. 2016 Oct 13;7:1636. eCollection 2016.

23.

The risk of low concentrations of antibiotics in agriculture for resistance in human health care.

Ter Kuile BH, Kraupner N, Brul S.

FEMS Microbiol Lett. 2016 Oct;363(19). pii: fnw210. Epub 2016 Sep 8. Review.

PMID:
27609231
24.

Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

Pandey R, Vischer NO, Smelt JP, van Beilen JW, Ter Beek A, De Vos WH, Brul S, Manders EM.

Appl Environ Microbiol. 2016 Oct 14;82(21):6463-6471. Print 2016 Nov 1. Erratum in: Appl Environ Microbiol. 2017 May 17;83(11):.

25.

'Omics' for microbial food stability: Proteomics for the development of predictive models for bacterial spore stress survival and outgrowth.

Abhyankar W, Stelder S, de Koning L, de Koster C, Brul S.

Int J Food Microbiol. 2017 Jan 2;240:11-18. doi: 10.1016/j.ijfoodmicro.2016.05.008. Epub 2016 May 7. Review.

PMID:
27296564
26.

Dynamics of Mutations during Development of Resistance by Pseudomonas aeruginosa against Five Antibiotics.

Feng Y, Jonker MJ, Moustakas I, Brul S, Ter Kuile BH.

Antimicrob Agents Chemother. 2016 Jun 20;60(7):4229-36. doi: 10.1128/AAC.00434-16. Print 2016 Jul.

27.

Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats.

Feng Y, Hodiamont CJ, van Hest RM, Brul S, Schultsz C, Ter Kuile BH.

PLoS One. 2016 Feb 12;11(2):e0149310. doi: 10.1371/journal.pone.0149310. eCollection 2016.

28.

Bacillus subtilis Spore Inner Membrane Proteome.

Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG.

J Proteome Res. 2016 Feb 5;15(2):585-94. doi: 10.1021/acs.jproteome.5b00976. Epub 2016 Jan 13.

PMID:
26731423
29.

Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli.

Händel N, Hoeksema M, Freijo Mata M, Brul S, ter Kuile BH.

Antimicrob Agents Chemother. 2015 Dec 14;60(3):1319-27. doi: 10.1128/AAC.02684-15.

30.

Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions.

Klis FM, Brul S.

Eukaryot Cell. 2015 Dec;14(12):1165-72. doi: 10.1128/EC.00142-15. Epub 2015 Oct 9. Review.

31.

Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution.

Pandey R, Pieper GH, Ter Beek A, Vischer NO, Smelt JP, Manders EM, Brul S.

Food Microbiol. 2015 Dec;52:88-96. doi: 10.1016/j.fm.2015.06.007. Epub 2015 Jun 23.

PMID:
26338121
32.

Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity.

de Boer R, Smith RL, De Vos WH, Manders EM, Brul S, van der Spek H.

PLoS One. 2015 May 13;10(5):e0126220. doi: 10.1371/journal.pone.0126220. eCollection 2015.

33.

Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis.

Lezzerini M, van de Ven K, Veerman M, Brul S, Budovskaya YV.

PLoS One. 2015 Apr 30;10(4):e0124508. doi: 10.1371/journal.pone.0124508. eCollection 2015.

34.

Temperature Dependence of the Proteome Profile of the Psychrotolerant Pathogenic Food Spoiler Bacillus weihenstephanensis Type Strain WSBC 10204.

Stelder SK, Mahmud SA, Dekker HL, de Koning LJ, Brul S, de Koster CG.

J Proteome Res. 2015 May 1;14(5):2169-76. doi: 10.1021/pr501307t. Epub 2015 Apr 22.

PMID:
25853650
35.

Factors that affect transfer of the IncI1 β-lactam resistance plasmid pESBL-283 between E. coli strains.

Händel N, Otte S, Jonker M, Brul S, ter Kuile BH.

PLoS One. 2015 Apr 1;10(4):e0123039. doi: 10.1371/journal.pone.0123039. eCollection 2015.

36.

De novo induction of resistance against voriconazole in Aspergillus fumigatus.

Händel N, de la Sayette S, Verweij PE, Brul S, Ter Kuile BH.

J Glob Antimicrob Resist. 2015 Mar;3(1):52-53. doi: 10.1016/j.jgar.2015.01.001. Epub 2015 Jan 23. No abstract available.

PMID:
27873654
37.

Simulation of the rate of transfer of antibiotic resistance between Escherichia coli strains cultured under well controlled environmental conditions.

Smelt JP, Hoefsloot HC, de Koster CG, Schuurmans JM, ter Kuile BH, Brul S.

Food Microbiol. 2015 Feb;45(Pt B):189-94. doi: 10.1016/j.fm.2014.03.019. Epub 2014 Apr 18.

PMID:
25500384
38.

Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.

Ter Beek A, Wijman JG, Zakrzewska A, Orij R, Smits GJ, Brul S.

Food Microbiol. 2015 Feb;45(Pt A):71-82. doi: 10.1016/j.fm.2014.02.013. Epub 2014 Feb 26.

PMID:
25481064
39.

Quantitative analysis of the effect of specific tea compounds on germination and outgrowth of Bacillus subtilis spores at single cell resolution.

Pandey R, Ter Beek A, Vischer NO, Smelt JP, Kemperman R, Manders EM, Brul S.

Food Microbiol. 2015 Feb;45(Pt A):63-70. doi: 10.1016/j.fm.2014.03.006. Epub 2014 Mar 16.

PMID:
25481063
40.

Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation.

Abhyankar W, Pandey R, Ter Beek A, Brul S, de Koning LJ, de Koster CG.

Food Microbiol. 2015 Feb;45(Pt A):54-62. doi: 10.1016/j.fm.2014.03.007. Epub 2014 Mar 18.

PMID:
25481062
41.

Spore proteomics: the past, present and the future.

Abhyankar W, de Koning LJ, Brul S, de Koster CG.

FEMS Microbiol Lett. 2014 Sep;358(2):137-44. doi: 10.1111/1574-6968.12568. Epub 2014 Aug 28. Review.

42.

Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis.

van Beilen JW, Teixeira de Mattos MJ, Hellingwerf KJ, Brul S.

Appl Environ Microbiol. 2014 Oct;80(19):5918-26. doi: 10.1128/AEM.01391-14. Epub 2014 Jul 18.

43.

Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance.

Händel N, Schuurmans JM, Feng Y, Brul S, ter Kuile BH.

Antimicrob Agents Chemother. 2014 Aug;58(8):4371-9. doi: 10.1128/AAC.02892-14. Epub 2014 May 19.

44.

A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts.

Mensonides FI, Brul S, Hellingwerf KJ, Bakker BM, Teixeira de Mattos MJ.

FEBS J. 2014 Feb;281(3):825-41.

45.

Thermal inactivation of microorganisms.

Smelt JP, Brul S.

Crit Rev Food Sci Nutr. 2014;54(10):1371-85. doi: 10.1080/10408398.2011.637645. Review.

PMID:
24564593
46.

Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains.

Schuurmans JM, van Hijum SA, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH.

Plasmid. 2014 Mar;72:1-8. doi: 10.1016/j.plasmid.2014.01.002. Epub 2014 Feb 10.

PMID:
24525238
47.

Experimental Simulation of the Effects of an Initial Antibiotic Treatment on a Subsequent Treatment after Initial Therapy Failure.

Feng Y, Händel N, de Groot MH, Brul S, Schultsz C, Ter Kuile BH.

Antibiotics (Basel). 2014 Feb 17;3(1):49-63. doi: 10.3390/antibiotics3010049.

48.

Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans.

Klis FM, de Koster CG, Brul S.

Eukaryot Cell. 2014 Jan;13(1):2-9. doi: 10.1128/EC.00250-13. Epub 2013 Nov 15. Review.

49.

In pursuit of protein targets: proteomic characterization of bacterial spore outer layers.

Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG.

J Proteome Res. 2013 Oct 4;12(10):4507-21. doi: 10.1021/pr4005629. Epub 2013 Sep 23.

PMID:
23998435
50.

Supplemental Content

Support Center