Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16


Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs.

Kern DM, Oh S, Hite RK, Brohawn SG.

Elife. 2019 Feb 18;8. pii: e42636. doi: 10.7554/eLife.42636.


Precise multimodal optical control of neural ensemble activity.

Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H.

Nat Neurosci. 2018 Jun;21(6):881-893. doi: 10.1038/s41593-018-0139-8. Epub 2018 Apr 30.


Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes.

Del Mármol J, Rietmeijer RA, Brohawn SG.

Methods Mol Biol. 2018;1684:129-150. doi: 10.1007/978-1-4939-7362-0_11.


How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2.

Brohawn SG.

Ann N Y Acad Sci. 2015 Sep;1352:20-32. doi: 10.1111/nyas.12874. Epub 2015 Aug 31. Review.


Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel.

Brohawn SG, Campbell EB, MacKinnon R.

Nature. 2014 Dec 4;516(7529):126-30. doi: 10.1038/nature14013.


Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels.

Brohawn SG, Su Z, MacKinnon R.

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3614-9. doi: 10.1073/pnas.1320768111. Epub 2014 Feb 18.


Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel.

Brohawn SG, Campbell EB, MacKinnon R.

Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2129-34. doi: 10.1073/pnas.1218950110. Epub 2013 Jan 22.


Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel.

Brohawn SG, del Mármol J, MacKinnon R.

Science. 2012 Jan 27;335(6067):436-41. doi: 10.1126/science.1213808.


Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice.

Brohawn SG, Schwartz TU.

Nat Struct Mol Biol. 2009 Nov;16(11):1173-7. doi: 10.1038/nsmb.1713. Epub 2009 Oct 25.


The nuclear pore complex has entered the atomic age.

Brohawn SG, Partridge JR, Whittle JR, Schwartz TU.

Structure. 2009 Sep 9;17(9):1156-68. doi: 10.1016/j.str.2009.07.014. Review.


A lattice model of the nuclear pore complex.

Brohawn SG, Schwartz TU.

Commun Integr Biol. 2009 May;2(3):205-7.


The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture.

Leksa NC, Brohawn SG, Schwartz TU.

Structure. 2009 Aug 12;17(8):1082-91. doi: 10.1016/j.str.2009.06.003. Epub 2009 Jul 2.


Structural evidence for common ancestry of the nuclear pore complex and vesicle coats.

Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU.

Science. 2008 Nov 28;322(5906):1369-73. doi: 10.1126/science.1165886. Epub 2008 Oct 30.


Homodimerization of the G protein SRbeta in the nucleotide-free state involves proline cis/trans isomerization in the switch II region.

Schwartz TU, Schmidt D, Brohawn SG, Blobel G.

Proc Natl Acad Sci U S A. 2006 May 2;103(18):6823-8. Epub 2006 Apr 20.


New water-soluble phosphines as reductants of peptide and protein disulfide bonds: reactivity and membrane permeability.

Cline DJ, Redding SE, Brohawn SG, Psathas JN, Schneider JP, Thorpe C.

Biochemistry. 2004 Dec 7;43(48):15195-203.


Avian sulfhydryl oxidase is not a metalloenzyme: adventitious binding of divalent metal ions to the enzyme.

Brohawn SG, Miksa IR, Thorpe C.

Biochemistry. 2003 Sep 23;42(37):11074-82.


Supplemental Content

Loading ...
Support Center