Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 77

1.

Toxin⁻Antitoxin Systems in Bacillus subtilis.

Brantl S, Müller P.

Toxins (Basel). 2019 May 9;11(5). pii: E262. doi: 10.3390/toxins11050262. Review.

2.

A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis.

Müller P, Gimpel M, Wildenhain T, Brantl S.

RNA Biol. 2019 Jul;16(7):972-987. doi: 10.1080/15476286.2019.1605811. Epub 2019 May 1.

3.

Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis.

Reuß DR, Faßhauer P, Mroch PJ, Ul-Haq I, Koo BM, Pöhlein A, Gross CA, Daniel R, Brantl S, Stülke J.

Nucleic Acids Res. 2019 Jun 4;47(10):5231-5242. doi: 10.1093/nar/gkz260.

4.

Bacillus subtilis Type I antitoxin SR6 Promotes Degradation of Toxin yonT mRNA and Is Required to Prevent Toxic yoyJ Overexpression.

Reif C, Löser C, Brantl S.

Toxins (Basel). 2018 Feb 7;10(2). pii: E74. doi: 10.3390/toxins10020074.

5.

Characterization of the interaction between the small RNA-encoded peptide SR1P and GapA from Bacillus subtilis.

Gimpel M, Maiwald C, Wiedemann C, Görlach M, Brantl S.

Microbiology. 2017 Aug;163(8):1248-1259. doi: 10.1099/mic.0.000505. Epub 2017 Aug 18.

PMID:
28818119
6.

Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

Dormeyer M, Lübke AL, Müller P, Lentes S, Reuß DR, Thürmer A, Stülke J, Daniel R, Brantl S, Commichau FM.

Environ Microbiol Rep. 2017 Jun;9(3):279-289. doi: 10.1111/1758-2229.12531. Epub 2017 Apr 3.

PMID:
28294562
7.

Dual-function small regulatory RNAs in bacteria.

Gimpel M, Brantl S.

Mol Microbiol. 2017 Feb;103(3):387-397. doi: 10.1111/mmi.13558. Epub 2016 Nov 14. Review.

8.

DNA-Binding Proteins Regulating pIP501 Transfer and Replication.

Grohmann E, Goessweiner-Mohr N, Brantl S.

Front Mol Biosci. 2016 Aug 11;3:42. doi: 10.3389/fmolb.2016.00042. eCollection 2016. Review.

9.

Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA.

Gimpel M, Brantl S.

RNA Biol. 2016 Sep;13(9):916-26. doi: 10.1080/15476286.2016.1208894. Epub 2016 Jul 22.

10.

ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.

Rosenberg J, Müller P, Lentes S, Thiele MJ, Zeigler DR, Tödter D, Paulus H, Brantl S, Stülke J, Commichau FM.

Mol Microbiol. 2016 Sep;101(5):879-93. doi: 10.1111/mmi.13429. Epub 2016 Jun 27.

11.

A multistress responsive type I toxin-antitoxin system: bsrE/SR5 from the B. subtilis chromosome.

Müller P, Jahn N, Ring C, Maiwald C, Neubert R, Meißner C, Brantl S.

RNA Biol. 2016 May 3;13(5):511-23. doi: 10.1080/15476286.2016.1156288. Epub 2016 Mar 3.

12.

Heat-shock-induced refolding entails rapid degradation of bsrG toxin mRNA by RNases Y and J1.

Jahn N, Brantl S.

Microbiology. 2016 Mar;162(3):590-9. doi: 10.1099/mic.0.000247. Epub 2016 Jan 22.

PMID:
26802042
13.

In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis.

Meißner C, Jahn N, Brantl S.

J Biol Chem. 2016 Jan 8;291(2):560-71. doi: 10.1074/jbc.M115.697524. Epub 2015 Nov 12.

14.
15.

Plasmid Replication Control by Antisense RNAs.

Brantl S.

Microbiol Spectr. 2014 Aug;2(4):PLAS-0001-2013. doi: 10.1128/microbiolspec.PLAS-0001-2013. Review.

PMID:
26104196
16.

Expression of the toxin-antitoxin genes yefM(Lrh), yoeB(Lrh) in human Lactobacillus rhamnosus isolates.

Krügel H, Klimina KM, Mrotzek G, Tretyakov A, Schöfl G, Saluz HP, Brantl S, Poluektova EU, Danilenko VN.

J Basic Microbiol. 2015 Aug;55(8):982-91. doi: 10.1002/jobm.201400904. Epub 2015 Apr 1.

PMID:
25832734
17.

sRNAs in bacterial type I and type III toxin-antitoxin systems.

Brantl S, Jahn N.

FEMS Microbiol Rev. 2015 May;39(3):413-27. doi: 10.1093/femsre/fuv003. Epub 2015 Mar 25. Review.

PMID:
25808661
18.

Antisense-RNA mediated control of plasmid replication - pIP501 revisited.

Brantl S.

Plasmid. 2015 Mar;78:4-16. doi: 10.1016/j.plasmid.2014.07.004. Epub 2014 Aug 7. Review.

PMID:
25108234
19.

Small regulatory RNAs from low-GC Gram-positive bacteria.

Brantl S, Brückner R.

RNA Biol. 2014;11(5):443-56. Epub 2014 Feb 10. Review.

20.

Activation of platelets by the endocannabinoids 2-arachidonoylglycerol and virodhamine is mediated by their conversion to arachidonic acid and thromboxane A2, not by activation of cannabinoid receptors.

Brantl SA, Khandoga AL, Siess W.

Platelets. 2014;25(6):465-6. doi: 10.3109/09537104.2013.835040. Epub 2013 Oct 8. Review. No abstract available.

PMID:
24102401
21.

One antitoxin--two functions: SR4 controls toxin mRNA decay and translation.

Jahn N, Brantl S.

Nucleic Acids Res. 2013 Nov;41(21):9870-80. doi: 10.1093/nar/gkt735. Epub 2013 Aug 22.

22.

Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

Brantl SA, Khandoga AL, Siess W.

Platelets. 2014;25(3):151-61. doi: 10.3109/09537104.2013.803530. Epub 2013 Jun 21.

PMID:
23789792
23.

Bacterial type I toxin-antitoxin systems.

Brantl S.

RNA Biol. 2012 Dec;9(12):1488-90. doi: 10.4161/rna.23045. Epub 2012 Dec 1.

PMID:
23324552
24.

Type I toxin-antitoxin systems in Bacillus subtilis.

Durand S, Jahn N, Condon C, Brantl S.

RNA Biol. 2012 Dec;9(12):1491-7. doi: 10.4161/rna.22358. Epub 2012 Oct 11. Review.

PMID:
23059907
25.

SR1--a small RNA with two remarkably conserved functions.

Gimpel M, Preis H, Barth E, Gramzow L, Brantl S.

Nucleic Acids Res. 2012 Dec;40(22):11659-72. doi: 10.1093/nar/gks895. Epub 2012 Oct 2.

26.

Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis.

Gimpel M, Brantl S.

J Microbiol Methods. 2012 Nov;91(2):312-7. doi: 10.1016/j.mimet.2012.09.003. Epub 2012 Sep 12.

PMID:
22982324
27.

Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria.

Brantl S.

Future Microbiol. 2012 Jul;7(7):853-71. doi: 10.2217/fmb.12.59. Review.

PMID:
22827307
28.

Why and how to eliminate spontaneous platelet aggregation in blood measured by multiple electrode aggregometry.

Bampalis VG, Brantl SA, Siess W.

J Thromb Haemost. 2012 Aug;10(8):1710-4. doi: 10.1111/j.1538-7836.2012.04819.x. No abstract available.

29.

BsrG/SR4 from Bacillus subtilis--the first temperature-dependent type I toxin-antitoxin system.

Jahn N, Preis H, Wiedemann C, Brantl S.

Mol Microbiol. 2012 Feb;83(3):579-98. doi: 10.1111/j.1365-2958.2011.07952.x. Epub 2012 Jan 9.

30.

Transcriptional repressor CopR acts by inhibiting RNA polymerase binding.

Licht A, Freede P, Brantl S.

Microbiology. 2011 Apr;157(Pt 4):1000-8. doi: 10.1099/mic.0.047209-0. Epub 2011 Jan 20.

PMID:
21252280
31.

Cervimycin C resistance in Bacillus subtilis is due to a promoter up-mutation and increased mRNA stability of the constitutive ABC-transporter gene bmrA.

Krügel H, Licht A, Biedermann G, Petzold A, Lassak J, Hupfer Y, Schlott B, Hertweck C, Platzer M, Brantl S, Saluz HP.

FEMS Microbiol Lett. 2010 Dec;313(2):155-63. doi: 10.1111/j.1574-6968.2010.02143.x. Epub 2010 Nov 15.

32.

A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon.

Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S.

Mol Microbiol. 2010 May;76(4):990-1009. doi: 10.1111/j.1365-2958.2010.07158.x. Epub 2010 Apr 1.

33.

Characterisation of Bacillus subtilis transcriptional regulators involved in metabolic processes.

Brantl S, Licht A.

Curr Protein Pept Sci. 2010 Jun;11(4):274-91. Review.

PMID:
20408793
34.

Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.

Eckart RA, Brantl S, Licht A.

FEMS Microbiol Lett. 2009 Oct;299(2):223-31. doi: 10.1111/j.1574-6968.2009.01754.x. Epub 2009 Aug 6.

35.

The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.

Licht A, Brantl S.

J Biol Chem. 2009 Oct 30;284(44):30032-8. doi: 10.1074/jbc.M109.033076. Epub 2009 Sep 2.

36.

CodY activates transcription of a small RNA in Bacillus subtilis.

Preis H, Eckart RA, Gudipati RK, Heidrich N, Brantl S.

J Bacteriol. 2009 Sep;191(17):5446-57. doi: 10.1128/JB.00602-09. Epub 2009 Jun 19.

37.

Bacterial chromosome-encoded small regulatory RNAs.

Brantl S.

Future Microbiol. 2009 Feb;4(1):85-103. doi: 10.2217/17460913.4.1.85. Review.

PMID:
19207102
38.

Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.

Licht A, Golbik R, Brantl S.

J Mol Biol. 2008 Jun 27;380(1):17-30. doi: 10.1016/j.jmb.2008.05.002. Epub 2008 May 8.

PMID:
18511073
40.

Metal sensing by RNA in bacteria: exception or rule?

Brantl S.

ACS Chem Biol. 2007 Oct 19;2(10):656-60.

PMID:
18041815
41.

FourU: a novel type of RNA thermometer in Salmonella.

Waldminghaus T, Heidrich N, Brantl S, Narberhaus F.

Mol Microbiol. 2007 Jul;65(2):413-24.

42.

In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA.

Heidrich N, Moll I, Brantl S.

Nucleic Acids Res. 2007;35(13):4331-46. Epub 2007 Jun 18.

43.

Regulatory mechanisms employed by cis-encoded antisense RNAs.

Brantl S.

Curr Opin Microbiol. 2007 Apr;10(2):102-9. Epub 2007 Mar 26. Review.

PMID:
17387036
45.
46.
47.

Bacterial gene regulation: metal ion sensing by proteins or RNA.

Brantl S.

Trends Biotechnol. 2006 Sep;24(9):383-6. Epub 2006 Jul 26.

PMID:
16872703
48.

Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis.

Licht A, Preis S, Brantl S.

Mol Microbiol. 2005 Oct;58(1):189-206.

49.

Supplemental Content

Loading ...
Support Center