Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

2.

Improved anaerobic use of arginine by Saccharomyces cerevisiae.

Martin O, Brandriss MC, Schneider G, Bakalinsky AT.

Appl Environ Microbiol. 2003 Mar;69(3):1623-8.

3.

Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae.

Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC.

Mol Microbiol. 2001 May;40(4):890-9.

4.
6.
7.

Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.

Xu S, Falvey DA, Brandriss MC.

Mol Cell Biol. 1995 Apr;15(4):2321-30.

8.
11.

Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae.

Dougherty KM, Brandriss MC, Valle D.

J Biol Chem. 1992 Jan 15;267(2):871-5.

12.
13.
14.
16.
17.
19.
22.
24.
25.

Proline transport in Saccharomyces cerevisiae.

Lasko PF, Brandriss MC.

J Bacteriol. 1981 Oct;148(1):241-7.

27.
29.
30.
31.

Substitution of serine caused by a recessive lethal suppressor in yeast.

Brandriss MC, Stewart JW, Sherman F, Botstein D.

J Mol Biol. 1976 Apr 15;102(3):467-76. No abstract available.

PMID:
178877
32.

Recessive lethal amber suppressors in yeast.

Brandriss MC, Soll L, Botstein D.

Genetics. 1975 Apr;79(4):551-60.

33.

Recognition of an Escherichia operator by a Salmonella repressor.

Brandriss MC, Calvo JM.

J Bacteriol. 1971 Dec;108(3):1431-3.

Supplemental Content

Loading ...
Support Center