Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

The Chd1 chromatin remodeler forms long-lived complexes with nucleosomes in the presence of ADP·BeF3 - and transition state analogs.

Ren R, Ghassabi Kondalaji S, Bowman GD.

J Biol Chem. 2019 Nov 29;294(48):18181-18191. doi: 10.1074/jbc.RA119.009782. Epub 2019 Oct 21.

PMID:
31636125
2.

Remodeling the genome with DNA twists.

Bowman GD, Deindl S.

Science. 2019 Oct 4;366(6461):35-36. doi: 10.1126/science.aay4317. No abstract available.

PMID:
31604293
3.

Uncovering a New Step in Sliding Nucleosomes.

Bowman GD.

Trends Biochem Sci. 2019 Aug;44(8):643-645. doi: 10.1016/j.tibs.2019.05.001. Epub 2019 Jun 3.

PMID:
31171402
4.

Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler.

Levendosky RF, Bowman GD.

Elife. 2019 May 16;8. pii: e45472. doi: 10.7554/eLife.45472.

5.

Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling.

Sabantsev A, Levendosky RF, Zhuang X, Bowman GD, Deindl S.

Nat Commun. 2019 Apr 12;10(1):1720. doi: 10.1038/s41467-019-09657-1.

6.

The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome.

Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD.

Nucleic Acids Res. 2018 Jun 1;46(10):4978-4990. doi: 10.1093/nar/gky206.

7.

A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA.

Winger J, Nodelman IM, Levendosky RF, Bowman GD.

Elife. 2018 May 29;7. pii: e34100. doi: 10.7554/eLife.34100.

8.

The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer.

Qiu Y, Levendosky RF, Chakravarthy S, Patel A, Bowman GD, Myong S.

Mol Cell. 2017 Oct 5;68(1):76-88.e6. doi: 10.1016/j.molcel.2017.08.018. Epub 2017 Sep 21.

9.

Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability.

Pilarowski GO, Vernon HJ, Applegate CD, Boukas L, Cho MT, Gurnett CA, Benke PJ, Beaver E, Heeley JM, Medne L, Krantz ID, Azage M, Niyazov D, Henderson LB, Wentzensen IM, Baskin B, Sacoto MJG, Bowman GD, Bjornsson HT.

J Med Genet. 2018 Aug;55(8):561-566. doi: 10.1136/jmedgenet-2017-104759. Epub 2017 Sep 2.

10.

A glimpse into chromatin remodeling.

Wigley DB, Bowman GD.

Nat Struct Mol Biol. 2017 Jun 6;24(6):498-500. doi: 10.1038/nsmb.3415. No abstract available.

PMID:
28586327
11.

The Sequence of Nucleosomal DNA Modulates Sliding by the Chd1 Chromatin Remodeler.

Winger J, Bowman GD.

J Mol Biol. 2017 Mar 24;429(6):808-822. doi: 10.1016/j.jmb.2017.02.002. Epub 2017 Feb 8.

12.

Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome.

Nodelman IM, Bleichert F, Patel A, Ren R, Horvath KC, Berger JM, Bowman GD.

Mol Cell. 2017 Feb 2;65(3):447-459.e6. doi: 10.1016/j.molcel.2016.12.011. Epub 2017 Jan 19.

13.

The Chd1 chromatin remodeler shifts hexasomes unidirectionally.

Levendosky RF, Sabantsev A, Deindl S, Bowman GD.

Elife. 2016 Dec 29;5. pii: e21356. doi: 10.7554/eLife.21356.

14.

Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome.

Bowman GD, McKnight JN.

Bioessays. 2017 Jan;39(1):1-8. doi: 10.1002/bies.201600183. Epub 2016 Nov 16. Review.

15.

Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5'-Phosphate (SAICAR) Activates Pyruvate Kinase Isoform M2 (PKM2) in Its Dimeric Form.

Yan M, Chakravarthy S, Tokuda JM, Pollack L, Bowman GD, Lee YS.

Biochemistry. 2016 Aug 23;55(33):4731-6. doi: 10.1021/acs.biochem.6b00658. Epub 2016 Aug 11.

16.

Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112.

Zucconi BE, Luef B, Xu W, Henry RA, Nodelman IM, Bowman GD, Andrews AJ, Cole PA.

Biochemistry. 2016 Jul 12;55(27):3727-34. doi: 10.1021/acs.biochem.6b00480. Epub 2016 Jul 1.

17.

The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome.

Nodelman IM, Horvath KC, Levendosky RF, Winger J, Ren R, Patel A, Li M, Wang MD, Roberts E, Bowman GD.

Nucleic Acids Res. 2016 Sep 19;44(16):7580-91. doi: 10.1093/nar/gkw406. Epub 2016 May 12.

18.

Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler.

McKnight JN, Tsukiyama T, Bowman GD.

Genome Res. 2016 May;26(5):693-704. doi: 10.1101/gr.199919.115. Epub 2016 Mar 18.

19.

A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins.

Marold JD, Kavran JM, Bowman GD, Barrick D.

Structure. 2015 Nov 3;23(11):2055-65. doi: 10.1016/j.str.2015.07.022. Epub 2015 Oct 1.

20.

Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1.

Hauk G, Bowman GD.

PLoS One. 2015 Jun 29;10(6):e0131690. doi: 10.1371/journal.pone.0131690. eCollection 2015.

21.

Dynamic regulation of transcription factors by nucleosome remodeling.

Li M, Hada A, Sen P, Olufemi L, Hall MA, Smith BY, Forth S, McKnight JN, Patel A, Bowman GD, Bartholomew B, Wang MD.

Elife. 2015 Jun 5;4. doi: 10.7554/eLife.06249.

22.

Post-translational modifications of histones that influence nucleosome dynamics.

Bowman GD, Poirier MG.

Chem Rev. 2015 Mar 25;115(6):2274-95. doi: 10.1021/cr500350x. Epub 2014 Nov 26. Review. No abstract available.

23.

Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains.

Nodelman IM, Bowman GD.

EMBO Rep. 2013 Dec;14(12):1098-103. doi: 10.1038/embor.2013.158. Epub 2013 Oct 15.

24.

ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling.

Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT.

Elife. 2013 Aug 20;2:e00863. doi: 10.7554/eLife.00863.

25.

Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler.

Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JN, Bowman GD.

Nucleic Acids Res. 2013 Feb 1;41(3):1637-48. doi: 10.1093/nar/gks1440. Epub 2012 Dec 28.

26.

Enzymatic excision of uracil residues in nucleosomes depends on the local DNA structure and dynamics.

Ye Y, Stahley MR, Xu J, Friedman JI, Sun Y, McKnight JN, Gray JJ, Bowman GD, Stivers JT.

Biochemistry. 2012 Jul 31;51(30):6028-38. Epub 2012 Jul 23.

27.

The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome.

Chakravarthy S, Patel A, Bowman GD.

Nucleic Acids Res. 2012 Sep 1;40(17):8285-95. Epub 2012 Jun 29.

28.

Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding.

Patel A, McKnight JN, Genzor P, Bowman GD.

J Biol Chem. 2011 Dec 23;286(51):43984-93. doi: 10.1074/jbc.M111.282970. Epub 2011 Oct 28.

29.

Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA.

Sharma A, Jenkins KR, Héroux A, Bowman GD.

J Biol Chem. 2011 Dec 9;286(49):42099-104. doi: 10.1074/jbc.C111.294462. Epub 2011 Oct 27.

30.

Structural insights into regulation and action of SWI2/SNF2 ATPases.

Hauk G, Bowman GD.

Curr Opin Struct Biol. 2011 Dec;21(6):719-27. doi: 10.1016/j.sbi.2011.09.003. Epub 2011 Oct 11. Review.

31.

Extranucleosomal DNA binding directs nucleosome sliding by Chd1.

McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD.

Mol Cell Biol. 2011 Dec;31(23):4746-59. doi: 10.1128/MCB.05735-11. Epub 2011 Oct 3.

32.

Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle.

Sczepanski JT, Wong RS, McKnight JN, Bowman GD, Greenberg MM.

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22475-80. doi: 10.1073/pnas.1012860108. Epub 2010 Dec 13.

33.

The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor.

Hauk G, McKnight JN, Nodelman IM, Bowman GD.

Mol Cell. 2010 Sep 10;39(5):711-23. doi: 10.1016/j.molcel.2010.08.012.

34.

Analysis of the role of PCNA-DNA contacts during clamp loading.

McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J.

BMC Struct Biol. 2010 Jan 30;10:3. doi: 10.1186/1472-6807-10-3.

35.

Mechanisms of ATP-dependent nucleosome sliding.

Bowman GD.

Curr Opin Struct Biol. 2010 Feb;20(1):73-81. doi: 10.1016/j.sbi.2009.12.002. Epub 2010 Jan 8. Review.

36.

Magnetic tweezers measurement of single molecule torque.

Celedon A, Nodelman IM, Wildt B, Dewan R, Searson P, Wirtz D, Bowman GD, Sun SX.

Nano Lett. 2009 Apr;9(4):1720-5. doi: 10.1021/nl900631w.

37.

The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading.

Johnson A, Yao NY, Bowman GD, Kuriyan J, O'Donnell M.

J Biol Chem. 2006 Nov 17;281(46):35531-43. Epub 2006 Sep 15.

38.

Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C.

Yao NY, Johnson A, Bowman GD, Kuriyan J, O'Donnell M.

J Biol Chem. 2006 Jun 23;281(25):17528-39. Epub 2006 Apr 11.

39.

Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen.

Kazmirski SL, Zhao Y, Bowman GD, O'donnell M, Kuriyan J.

Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13801-6. Epub 2005 Sep 16.

40.

DNA polymerase clamp loaders and DNA recognition.

Bowman GD, Goedken ER, Kazmirski SL, O'Donnell M, Kuriyan J.

FEBS Lett. 2005 Feb 7;579(4):863-7. Review.

41.

Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex.

Goedken ER, Kazmirski SL, Bowman GD, O'Donnell M, Kuriyan J.

Nat Struct Mol Biol. 2005 Feb;12(2):183-90. Epub 2005 Jan 16.

PMID:
15665871
42.

Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.

Bowman GD, O'Donnell M, Kuriyan J.

Nature. 2004 Jun 17;429(6993):724-30.

PMID:
15201901
43.

Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site.

Bowman GD, Nodelman IM, Levy O, Lin SL, Tian P, Zamb TJ, Udem SA, Venkataraghavan B, Schutt CE.

J Mol Biol. 2000 Dec 15;304(5):861-71.

PMID:
11124032
44.

A comparative structural analysis of the ADF/cofilin family.

Bowman GD, Nodelman IM, Hong Y, Chua NH, Lindberg U, Schutt CE.

Proteins. 2000 Nov 15;41(3):374-84.

PMID:
11025548
45.

X-ray structure determination of human profilin II: A comparative structural analysis of human profilins.

Nodelman IM, Bowman GD, Lindberg U, Schutt CE.

J Mol Biol. 1999 Dec 17;294(5):1271-85.

PMID:
10600384
46.

Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli.

Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ.

J Bacteriol. 1998 Nov;180(22):5875-84.

Supplemental Content

Loading ...
Support Center