Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

T Cell Metabolism Is Dependent on Anatomical Location within the Lung.

Roberts LM, Evans TJ, Bosio CM.

Immunohorizons. 2019 Sep 13;3(9):433-439. doi: 10.4049/immunohorizons.1900063.

PMID:
31519702
2.

TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation.

Chiramel AI, Meyerson NR, McNally KL, Broeckel RM, Montoya VR, Méndez-Solís O, Robertson SJ, Sturdevant GL, Lubick KJ, Nair V, Youseff BH, Ireland RM, Bosio CM, Kim K, Luban J, Hirsch VM, Taylor RT, Bouamr F, Sawyer SL, Best SM.

Cell Rep. 2019 Jun 11;27(11):3269-3283.e6. doi: 10.1016/j.celrep.2019.05.040.

3.

Temporal Requirement for Pulmonary Resident and Circulating T Cells during Virulent Francisella tularensis Infection.

Roberts LM, Wehrly TD, Ireland RM, Crane DD, Scott DP, Bosio CM.

J Immunol. 2018 Aug 15;201(4):1186-1193. doi: 10.4049/jimmunol.1800052. Epub 2018 Jul 6.

4.

Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid.

Ireland R, Schwarz B, Nardone G, Wehrly TD, Broeckling CD, Chiramel AI, Best SM, Bosio CM.

J Innate Immun. 2018;10(4):291-305. doi: 10.1159/000489504. Epub 2018 Jul 3.

5.

Temporal Manipulation of Mitochondrial Function by Virulent Francisella tularensis To Limit Inflammation and Control Cell Death.

Jessop F, Schwarz B, Heitmann E, Buntyn R, Wehrly T, Bosio CM.

Infect Immun. 2018 Jul 23;86(8). pii: e00044-18. doi: 10.1128/IAI.00044-18. Print 2018 Aug.

6.

The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain.

Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD.

Front Microbiol. 2018 Apr 4;9:607. doi: 10.3389/fmicb.2018.00607. eCollection 2018.

7.

Expansion and retention of pulmonary CD4+ T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia.

Roberts LM, Wehrly TD, Crane DD, Bosio CM.

Vaccine. 2017 May 2;35(19):2575-2581. doi: 10.1016/j.vaccine.2017.03.064. Epub 2017 Mar 31.

PMID:
28372827
8.

Inclusion of Epitopes That Expand High-Avidity CD4+ T Cells Transforms Subprotective Vaccines to Efficacious Immunogens against Virulent Francisella tularensis.

Roberts LM, Crane DD, Wehrly TD, Fletcher JR, Jones BD, Bosio CM.

J Immunol. 2016 Oct 1;197(7):2738-47. doi: 10.4049/jimmunol.1600879. Epub 2016 Aug 19.

9.

GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection.

Kurtz SL, Bosio CM, De Pascalis R, Elkins KL.

Microbes Infect. 2016 Dec;18(12):758-767. doi: 10.1016/j.micinf.2016.07.003. Epub 2016 Jul 27.

PMID:
27475899
10.

Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation.

Wyatt EV, Diaz K, Griffin AJ, Rasmussen JA, Crane DD, Jones BD, Bosio CM.

J Immunol. 2016 May 15;196(10):4227-36. doi: 10.4049/jimmunol.1502456. Epub 2016 Mar 30.

11.

Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia.

Chandler JC, Sutherland MD, Harton MR, Molins CR, Anderson RV, Heaslip DG, Bosio CM, Belisle JT.

J Proteome Res. 2015 Feb 6;14(2):664-75. doi: 10.1021/pr500628k. Epub 2014 Dec 29.

12.

Successful protection against tularemia in C57BL/6 mice is correlated with expansion of Francisella tularensis-specific effector T cells.

Griffin AJ, Crane DD, Wehrly TD, Bosio CM.

Clin Vaccine Immunol. 2015 Jan;22(1):119-28. doi: 10.1128/CVI.00648-14. Epub 2014 Nov 19.

13.

Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome.

Crane DD, Bauler TJ, Wehrly TD, Bosio CM.

Front Microbiol. 2014 Aug 20;5:438. doi: 10.3389/fmicb.2014.00438. eCollection 2014.

14.

Virulent Francisella tularensis destabilize host mRNA to rapidly suppress inflammation.

Bauler TJ, Chase JC, Wehrly TD, Bosio CM.

J Innate Immun. 2014;6(6):793-805. doi: 10.1159/000363243. Epub 2014 May 27.

15.

T-bet regulates immunity to Francisella tularensis live vaccine strain infection, particularly in lungs.

Melillo AA, Foreman O, Bosio CM, Elkins KL.

Infect Immun. 2014 Apr;82(4):1477-90. doi: 10.1128/IAI.01545-13. Epub 2014 Jan 13.

16.

Alternative activation of macrophages and induction of arginase are not components of pathogenesis mediated by Francisella species.

Griffin AJ, Crane DD, Wehrly TD, Scott DP, Bosio CM.

PLoS One. 2013 Dec 6;8(12):e82096. doi: 10.1371/journal.pone.0082096. eCollection 2013.

17.

Lipids derived from virulent Francisella tularensis broadly inhibit pulmonary inflammation via toll-like receptor 2 and peroxisome proliferator-activated receptor α.

Crane DD, Ireland R, Alinger JB, Small P, Bosio CM.

Clin Vaccine Immunol. 2013 Oct;20(10):1531-40. doi: 10.1128/CVI.00319-13. Epub 2013 Aug 7.

18.

Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8.

Ireland R, Wang R, Alinger JB, Small P, Bosio CM.

J Immunol. 2013 Aug 1;191(3):1276-86. doi: 10.4049/jimmunol.1300867. Epub 2013 Jul 1.

19.

B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses.

Crane DD, Griffin AJ, Wehrly TD, Bosio CM.

J Immunol. 2013 Mar 15;190(6):2756-66. doi: 10.4049/jimmunol.1202697. Epub 2013 Feb 1.

20.

Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection.

Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL.

Infect Immun. 2013 Feb;81(2):585-97. doi: 10.1128/IAI.01249-12. Epub 2012 Dec 10.

21.

Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

Rockx-Brouwer D, Chong A, Wehrly TD, Child R, Crane DD, Celli J, Bosio CM.

PLoS One. 2012;7(5):e37752. doi: 10.1371/journal.pone.0037752. Epub 2012 May 25.

22.

Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia.

Crane DD, Scott DP, Bosio CM.

PLoS One. 2012;7(3):e33349. doi: 10.1371/journal.pone.0033349. Epub 2012 Mar 12.

23.

Development of functional and molecular correlates of vaccine-induced protection for a model intracellular pathogen, F. tularensis LVS.

De Pascalis R, Chou AY, Bosio CM, Huang CY, Follmann DA, Elkins KL.

PLoS Pathog. 2012 Jan;8(1):e1002494. doi: 10.1371/journal.ppat.1002494. Epub 2012 Jan 19.

24.

IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis.

Bauler TJ, Chase JC, Bosio CM.

J Immunol. 2011 Aug 15;187(4):1845-55. doi: 10.4049/jimmunol.1100377. Epub 2011 Jul 13.

25.

The subversion of the immune system by francisella tularensis.

Bosio CM.

Front Microbiol. 2011 Feb 1;2:9. doi: 10.3389/fmicb.2011.00009. eCollection 2011.

26.

Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

White MD, Bosio CM, Duplantis BN, Nano FE.

Cell Mol Life Sci. 2011 Sep;68(18):3019-31. doi: 10.1007/s00018-011-0734-2. Epub 2011 May 31. Review.

27.

Infection of mice with Francisella as an immunological model.

Conlan JW, Chen W, Bosio CM, Cowley SC, Elkins KL.

Curr Protoc Immunol. 2011 Apr;Chapter 19:Unit 19.14. doi: 10.1002/0471142735.im1914s93.

28.

Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines.

Duplantis BN, Bosio CM, Nano FE.

J Mol Med (Berl). 2011 May;89(5):437-44. doi: 10.1007/s00109-010-0721-3. Epub 2011 Jan 13. Review.

PMID:
21229224
29.

Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs.

Anderson RV, Crane DD, Bosio CM.

Vaccine. 2010 Sep 14;28(40):6562-72. doi: 10.1016/j.vaccine.2010.07.072. Epub 2010 Aug 3.

30.

Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines.

Duplantis BN, Osusky M, Schmerk CL, Ross DR, Bosio CM, Nano FE.

Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13456-60. doi: 10.1073/pnas.1004119107. Epub 2010 Jul 12.

31.

Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens.

Ireland R, Olivares-Zavaleta N, Warawa JM, Gherardini FC, Jarrett C, Hinnebusch BJ, Belisle JT, Fairman J, Bosio CM.

PLoS Pathog. 2010 May 27;6(5):e1000921. doi: 10.1371/journal.ppat.1000921.

32.
33.

A novel role for plasmin-mediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, Francisella tularensis.

Crane DD, Warner SL, Bosio CM.

J Immunol. 2009 Oct 1;183(7):4593-600. doi: 10.4049/jimmunol.0901655. Epub 2009 Sep 14.

34.

Mucosal immunotherapy for protection from pneumonic infection with Francisella tularensis.

Troyer RM, Propst KL, Fairman J, Bosio CM, Dow SW.

Vaccine. 2009 Jul 16;27(33):4424-33. doi: 10.1016/j.vaccine.2009.05.041. Epub 2009 May 31.

35.

Virulence variation among isolates of western equine encephalitis virus in an outbred mouse model.

Logue CH, Bosio CF, Welte T, Keene KM, Ledermann JP, Phillips A, Sheahan BJ, Pierro DJ, Marlenee N, Brault AC, Bosio CM, Singh AJ, Powers AM, Olson KE.

J Gen Virol. 2009 Aug;90(Pt 8):1848-58. doi: 10.1099/vir.0.008656-0. Epub 2009 Apr 29.

36.

Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages.

Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, Edwards JA, Brouwer D, Nair V, Fischer ER, Wicke L, Curda AJ, Kupko JJ 3rd, Martens C, Crane DD, Bosio CM, Porcella SF, Celli J.

Cell Microbiol. 2009 Jul;11(7):1128-50. doi: 10.1111/j.1462-5822.2009.01316.x. Epub 2009 Mar 18.

37.

Lung environment determines unique phenotype of alveolar macrophages.

Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM, Dow SW.

Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L936-46. doi: 10.1152/ajplung.90625.2008. Epub 2009 Mar 20.

38.

Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4.

Chase JC, Celli J, Bosio CM.

Infect Immun. 2009 Jan;77(1):180-95. doi: 10.1128/IAI.00879-08. Epub 2008 Nov 3.

39.

A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague.

Yamanaka H, Hoyt T, Yang X, Golden S, Bosio CM, Crist K, Becker T, Maddaloni M, Pascual DW.

Infect Immun. 2008 Oct;76(10):4564-73. doi: 10.1128/IAI.00581-08. Epub 2008 Aug 11.

40.

Innate and adaptive immunity to Francisella.

Elkins KL, Cowley SC, Bosio CM.

Ann N Y Acad Sci. 2007 Jun;1105:284-324. Epub 2007 Apr 27. Review.

PMID:
17468235
41.

NKp30-dependent cytolysis of filovirus-infected human dendritic cells.

Fuller CL, Ruthel G, Warfield KL, Swenson DL, Bosio CM, Aman MJ, Bavari S.

Cell Microbiol. 2007 Apr;9(4):962-76.

PMID:
17381429
42.

Active suppression of the pulmonary immune response by Francisella tularensis Schu4.

Bosio CM, Bielefeldt-Ohmann H, Belisle JT.

J Immunol. 2007 Apr 1;178(7):4538-47.

43.

Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague.

Yang X, Hinnebusch BJ, Trunkle T, Bosio CM, Suo Z, Tighe M, Harmsen A, Becker T, Crist K, Walters N, Avci R, Pascual DW.

J Immunol. 2007 Jan 15;178(2):1059-67.

44.

Francisella tularensis induces aberrant activation of pulmonary dendritic cells.

Bosio CM, Dow SW.

J Immunol. 2005 Nov 15;175(10):6792-801.

45.

Early interaction of Yersinia pestis with APCs in the lung.

Bosio CM, Goodyear AW, Dow SW.

J Immunol. 2005 Nov 15;175(10):6750-6.

46.

A Tn7-based broad-range bacterial cloning and expression system.

Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP.

Nat Methods. 2005 Jun;2(6):443-8.

PMID:
15908923
47.

Ebola and Marburg virus-like particles activate human myeloid dendritic cells.

Bosio CM, Moore BD, Warfield KL, Ruthel G, Mohamadzadeh M, Aman MJ, Bavari S.

Virology. 2004 Sep 1;326(2):280-7.

48.

Role of natural killer cells in innate protection against lethal ebola virus infection.

Warfield KL, Perkins JG, Swenson DL, Deal EM, Bosio CM, Aman MJ, Yokoyama WM, Young HA, Bavari S.

J Exp Med. 2004 Jul 19;200(2):169-79. Epub 2004 Jul 12.

49.

Ebola virus-like particles protect from lethal Ebola virus infection.

Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M, Schmaljohn A, Aman MJ, Bavari S.

Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94. Epub 2003 Dec 12.

50.

Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation.

Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A.

J Infect Dis. 2003 Dec 1;188(11):1630-8. Epub 2003 Nov 14.

PMID:
14639532

Supplemental Content

Loading ...
Support Center