Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39


Core-shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts.

Kovács D, Igaz N, Marton A, Rónavári A, Bélteky P, Bodai L, Spengler G, Tiszlavicz L, Rázga Z, Hegyi P, Vizler C, Boros IM, Kónya Z, Kiricsi M.

J Nanobiotechnology. 2020 Jan 21;18(1):18. doi: 10.1186/s12951-020-0576-x.


SerpinB2 is involved in cellular response upon UV irradiation.

Majoros H, Ujfaludi Z, Borsos BN, Hudacsek VV, Nagy Z, Coin F, Buzas K, Kovács I, Bíró T, Boros IM, Pankotai T.

Sci Rep. 2019 Feb 26;9(1):2753. doi: 10.1038/s41598-019-39073-w.


Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells.

Gopisetty MK, Kovács D, Igaz N, Rónavári A, Bélteky P, Rázga Z, Venglovecz V, Csoboz B, Boros IM, Kónya Z, Kiricsi M.

J Nanobiotechnology. 2019 Jan 22;17(1):9. doi: 10.1186/s12951-019-0448-4.


Genetic, epigenetic and transcriptional comparison of esophagus tumor‑associated and adjacent normal myofibroblasts.

Huliák I, Bodai L, Czepán M, Kovács D, Szabó A, Tiszlavicz L, Lázár G, Rakonczay Z Jr, Hegyi P, Boros IM, Kiricsi M.

Oncol Rep. 2019 Feb;41(2):839-852. doi: 10.3892/or.2018.6909. Epub 2018 Dec 6.


Analysis of Drosophila melanogaster testis transcriptome.

Vedelek V, Bodai L, Grézal G, Kovács B, Boros IM, Laurinyecz B, Sinka R.

BMC Genomics. 2018 Sep 24;19(1):697. doi: 10.1186/s12864-018-5085-z.


Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes.

Rónavári A, Igaz N, Gopisetty MK, Szerencsés B, Kovács D, Papp C, Vágvölgyi C, Boros IM, Kónya Z, Kiricsi M, Pfeiffer I.

Int J Nanomedicine. 2018 Feb 1;13:695-703. doi: 10.2147/IJN.S152010. eCollection 2018.


Coordinated activation of a cluster of MMP genes in response to UVB radiation.

Ujfaludi Z, Tuzesi A, Majoros H, Rothler B, Pankotai T, Boros IM.

Sci Rep. 2018 Feb 8;8(1):2660. doi: 10.1038/s41598-018-20999-6.


Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes.

Caliskan G, Baris IC, Ayaydin F, Dobson MJ, Senarisoy M, Boros IM, Topcu Z, Zencir S.

PLoS One. 2017 Dec 12;12(12):e0189193. doi: 10.1371/journal.pone.0189193. eCollection 2017.


TAF10 and TAF10b partially redundant roles during Drosophila melanogaster morphogenesis.

Pahi Z, Borsos BN, Vedelek B, Shidlovskii YV, Georgieva SG, Boros IM, Pankotai T.

Transcription. 2017;8(5):297-306. doi: 10.1080/21541264.2017.1327836. Epub 2017 Aug 25.


Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

Rónavári A, Kovács D, Igaz N, Vágvölgyi C, Boros IM, Kónya Z, Pfeiffer I, Kiricsi M.

Int J Nanomedicine. 2017 Jan 27;12:871-883. doi: 10.2147/IJN.S122842. eCollection 2017.


Human p53 interacts with the elongating RNAPII complex and is required for the release of actinomycin D induced transcription blockage.

Borsos BN, Huliák I, Majoros H, Ujfaludi Z, Gyenis Á, Pukler P, Boros IM, Pankotai T.

Sci Rep. 2017 Jan 19;7:40960. doi: 10.1038/srep40960.


Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

Igaz N, Kovács D, Rázga Z, Kónya Z, Boros IM, Kiricsi M.

Colloids Surf B Biointerfaces. 2016 Oct 1;146:670-7. doi: 10.1016/j.colsurfb.2016.07.004. Epub 2016 Jul 5.


Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis.

Kovács D, Igaz N, Keskeny C, Bélteky P, Tóth T, Gáspár R, Madarász D, Rázga Z, Kónya Z, Boros IM, Kiricsi M.

Sci Rep. 2016 Jun 13;6:27902. doi: 10.1038/srep27902.


Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer.

Kovács D, Szőke K, Igaz N, Spengler G, Molnár J, Tóth T, Madarász D, Rázga Z, Kónya Z, Boros IM, Kiricsi M.

Nanomedicine. 2016 Apr;12(3):601-610. doi: 10.1016/j.nano.2015.10.015. Epub 2015 Dec 2.


Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

Vedelek B, Blastyák A, Boros IM.

PLoS One. 2015 Nov 13;10(11):e0142771. doi: 10.1371/journal.pone.0142771. eCollection 2015.


dTAF10- and dTAF10b-Containing Complexes Are Required for Ecdysone-Driven Larval-Pupal Morphogenesis in Drosophila melanogaster.

Pahi Z, Kiss Z, Komonyi O, Borsos BN, Tora L, Boros IM, Pankotai T.

PLoS One. 2015 Nov 10;10(11):e0142226. doi: 10.1371/journal.pone.0142226. eCollection 2015.


Acetylations of Ftz-F1 and histone H4K5 are required for the fine-tuning of ecdysone biosynthesis during Drosophila metamorphosis.

Borsos BN, Pankotai T, Kovács D, Popescu C, Páhi Z, Boros IM.

Dev Biol. 2015 Aug 1;404(1):80-7. doi: 10.1016/j.ydbio.2015.04.020. Epub 2015 May 8.


mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

Sike A, Nagy E, Vedelek B, Pusztai D, Szerémy P, Venetianer A, Boros IM.

PLoS One. 2014 Jan 7;9(1):e84915. doi: 10.1371/journal.pone.0084915. eCollection 2014.


Functional characterization and gene expression profiling of Drosophila melanogaster short dADA2b isoform-containing dSAGA complexes.

Pankotai T, Zsindely N, Vamos EE, Komonyi O, Bodai L, Boros IM.

BMC Genomics. 2013 Jan 22;14:44. doi: 10.1186/1471-2164-14-44.


The objectivity of reporters: interference between physically unlinked promoters affects reporter gene expression in transient transfection experiments.

Huliák I, Sike A, Zencir S, Boros IM.

DNA Cell Biol. 2012 Nov;31(11):1580-4. doi: 10.1089/dna.2012.1711. Epub 2012 Sep 20.


High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production.

Juhász I, Villányi Z, Tombácz I, Boros IM.

Gene. 2012 Nov 1;509(1):60-7. doi: 10.1016/j.gene.2012.07.043. Epub 2012 Aug 8.


Ecdysone induced gene expression is associated with acetylation of histone H3 lysine 23 in Drosophila melanogaster.

Bodai L, Zsindely N, Gáspár R, Kristó I, Komonyi O, Boros IM.

PLoS One. 2012;7(7):e40565. doi: 10.1371/journal.pone.0040565. Epub 2012 Jul 10.


Histone modification in Drosophila.

Boros IM.

Brief Funct Genomics. 2012 Jul;11(4):319-31. doi: 10.1093/bfgp/els029. Review.


The C-terminal domains of ADA2 proteins determine selective incorporation into GCN5-containing complexes that target histone H3 or H4 for acetylation.

Vamos EE, Boros IM.

FEBS Lett. 2012 Sep 21;586(19):3279-86. doi: 10.1016/j.febslet.2012.06.051. Epub 2012 Jul 13.


Elevated level of lysine 9-acetylated histone H3 at the MDR1 promoter in multidrug-resistant cells.

Toth M, Boros IM, Balint E.

Cancer Sci. 2012 Apr;103(4):659-69. doi: 10.1111/j.1349-7006.2012.02215.x. Epub 2012 Mar 19.


In vivo effects of abolishing the single canonical sumoylation site in the C-terminal region of Drosophila p53.

Pardi N, Vámos E, Ujfaludi Z, Komonyi O, Bodai L, Boros IM.

Acta Biol Hung. 2011 Dec;62(4):397-412. doi: 10.1556/ABiol.62.2011.4.6.


The dissociable RPB4 subunit of RNA Pol II has vital functions in Drosophila.

Pankotai T, Ujfaludi Z, Vámos E, Suri K, Boros IM.

Mol Genet Genomics. 2010 Jan;283(1):89-97. doi: 10.1007/s00438-009-0499-6. Epub 2009 Nov 18.


The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes.

Zsindely N, Pankotai T, Ujfaludi Z, Lakatos D, Komonyi O, Bodai L, Tora L, Boros IM.

Nucleic Acids Res. 2009 Nov;37(20):6665-80. doi: 10.1093/nar/gkp722. Epub 2009 Sep 8.


A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection.

Komonyi O, Schauer T, Papai G, Deak P, Boros IM.

J Cell Sci. 2009 Mar 15;122(Pt 6):769-74. doi: 10.1242/jcs.035097. Epub 2009 Feb 24.


Misregulated RNA Pol II C-terminal domain phosphorylation results in apoptosis.

Schauer T, Tombácz I, Ciurciu A, Komonyi O, Boros IM.

Cell Mol Life Sci. 2009 Mar;66(5):909-18. doi: 10.1007/s00018-009-8670-0.


Loss of ATAC-specific acetylation of histone H4 at Lys12 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at Ser10.

Ciurciu A, Komonyi O, Boros IM.

J Cell Sci. 2008 Oct 15;121(Pt 20):3366-72. doi: 10.1242/jcs.028555. Epub 2008 Sep 16.


TATA binding protein associated factor 3 (TAF3) interacts with p53 and inhibits its function.

Bereczki O, Ujfaludi Z, Pardi N, Nagy Z, Tora L, Boros IM, Balint E.

BMC Mol Biol. 2008 Jun 12;9:57. doi: 10.1186/1471-2199-9-57.


Different sets of genes are activated by p53 upon UV or ionizing radiation in Drosophila melanogaster.

Ujfaludi Z, Boros IM, Bálint E.

Acta Biol Hung. 2007;58 Suppl:65-79. doi: 10.1556/ABiol.58.2007.Suppl.6.


The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization.

Carré C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, Tricoire H, Tora L, Boros IM, Antoniewski C.

EMBO Rep. 2008 Feb;9(2):187-92. Epub 2007 Dec 14.


Daxx-like protein of Drosophila interacts with Dmp53 and affects longevity and Ark mRNA level.

Bodai L, Pardi N, Ujfaludi Z, Bereczki O, Komonyi O, Balint E, Boros IM.

J Biol Chem. 2007 Dec 14;282(50):36386-93. Epub 2007 Oct 12.


The Drosophila histone acetyltransferase Gcn5 and transcriptional adaptor Ada2a are involved in nucleosomal histone H4 acetylation.

Ciurciu A, Komonyi O, Pankotai T, Boros IM.

Mol Cell Biol. 2006 Dec;26(24):9413-23. Epub 2006 Oct 9.


Interaction of bovine leukemia virus transactivator Tax with bZip proteins.

Boros IM, Tie F, Giam CZ.

Virology. 1995 Dec 1;214(1):207-14.


In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax.

Paca-Uccaralertkun S, Zhao LJ, Adya N, Cross JV, Cullen BR, Boros IM, Giam CZ.

Mol Cell Biol. 1994 Jan;14(1):456-62.




Orv Hetil. 1964 Aug 16;105:1565-7. Hungarian. No abstract available.


Supplemental Content

Loading ...
Support Center