Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production.

Cordente AG, Borneman AR, Bartel C, Capone D, Solomon M, Roach M, Curtin CD.

Appl Environ Microbiol. 2019 Mar 6;85(6). pii: e02684-18. doi: 10.1128/AEM.02684-18. Print 2019 Mar 15.

PMID:
30658969
2.

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies.

Roach MJ, Schmidt SA, Borneman AR.

BMC Bioinformatics. 2018 Nov 29;19(1):460. doi: 10.1186/s12859-018-2485-7.

3.

Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay.

Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, Schmidt SA, Borneman AR.

PLoS Genet. 2018 Nov 20;14(11):e1007807. doi: 10.1371/journal.pgen.1007807. eCollection 2018 Nov.

4.

Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains.

Varela C, Schmidt SA, Borneman AR, Pang CNI, Krömerx JO, Khan A, Song X, Hodson MP, Solomon M, Mayr CM, Hines W, Pretorius IS, Baker MS, Roessner U, Mercurio M, Henschke PA, Wilkins MR, Chambers PJ.

Metab Eng. 2018 Sep;49:178-191. doi: 10.1016/j.ymben.2018.08.006. Epub 2018 Aug 20.

PMID:
30138679
5.

A Novel Approach to Isolating Improved Industrial Interspecific Wine Yeasts Using Chromosomal Mutations as Potential Markers for Increased Fitness.

Bellon JR, Ford CM, Borneman AR, Chambers PJ.

Front Microbiol. 2018 Jul 3;9:1442. doi: 10.3389/fmicb.2018.01442. eCollection 2018.

6.

Heterologous Production of Flavour and Aroma Compounds in Saccharomyces cerevisiae.

Kutyna DR, Borneman AR.

Genes (Basel). 2018 Jun 28;9(7). pii: E326. doi: 10.3390/genes9070326. Review.

7.

Novel wine yeast with ARO4 and TYR1 mutations that overproduce 'floral' aroma compounds 2-phenylethanol and 2-phenylethyl acetate.

Cordente AG, Solomon M, Schulkin A, Leigh Francis I, Barker A, Borneman AR, Curtin CD.

Appl Microbiol Biotechnol. 2018 Jul;102(14):5977-5988. doi: 10.1007/s00253-018-9054-x. Epub 2018 May 9.

PMID:
29744630
8.

Whole transcriptome RNAseq analysis of Oenococcus oeni reveals distinct intra-specific expression patterns during malolactic fermentation, including genes involved in diacetyl metabolism.

Sternes PR, Costello PJ, Chambers PJ, Bartowsky EJ, Borneman AR.

Int J Food Microbiol. 2017 Sep 18;257:216-224. doi: 10.1016/j.ijfoodmicro.2017.06.024. Epub 2017 Jun 28.

PMID:
28688370
9.

A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation.

Sternes PR, Lee D, Kutyna DR, Borneman AR.

Gigascience. 2017 Jul 1;6(7):1-10. doi: 10.1093/gigascience/gix040.

10.

Genome Sequences of Three Species of Hanseniaspora Isolated from Spontaneous Wine Fermentations.

Sternes PR, Lee D, Kutyna DR, Borneman AR.

Genome Announc. 2016 Nov 17;4(6). pii: e01287-16. doi: 10.1128/genomeA.01287-16.

11.

Yeasts found in vineyards and wineries.

Varela C, Borneman AR.

Yeast. 2017 Mar;34(3):111-128. doi: 10.1002/yea.3219. Epub 2016 Dec 6. Review.

12.

Erratum to: 'Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni'.

Sternes PR, Borneman AR.

BMC Genomics. 2016 Oct 20;17(1):813. No abstract available.

13.

Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni.

Sternes PR, Borneman AR.

BMC Genomics. 2016 Apr 27;17:308. doi: 10.1186/s12864-016-2604-7. Erratum in: BMC Genomics. 2016 Oct 20;17 (1):813.

14.

Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion.

Lee D, Lloyd ND, Pretorius IS, Borneman AR.

Microb Cell Fact. 2016 Mar 4;15:49. doi: 10.1186/s12934-016-0446-2.

15.

Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.

Borneman AR, Forgan AH, Kolouchova R, Fraser JA, Schmidt SA.

G3 (Bethesda). 2016 Apr 7;6(4):957-71. doi: 10.1534/g3.115.025692. Erratum in: G3 (Bethesda). 2017 Jan 5;7(1):319.

16.

Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains.

Crauwels S, Van Assche A, de Jonge R, Borneman AR, Verreth C, Troels P, De Samblanx G, Marchal K, Van de Peer Y, Willems KA, Verstrepen KJ, Curtin CD, Lievens B.

Appl Microbiol Biotechnol. 2015 Nov;99(21):9123-34. doi: 10.1007/s00253-015-6769-9. Epub 2015 Jul 2.

PMID:
26135985
17.

Genomic insights into the Saccharomyces sensu stricto complex.

Borneman AR, Pretorius IS.

Genetics. 2015 Feb;199(2):281-91. doi: 10.1534/genetics.114.173633. Review.

18.

Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates.

Borneman AR, Zeppel R, Chambers PJ, Curtin CD.

PLoS Genet. 2014 Feb 13;10(2):e1004161. doi: 10.1371/journal.pgen.1004161. eCollection 2014 Feb.

19.

At the cutting-edge of grape and wine biotechnology.

Borneman AR, Schmidt SA, Pretorius IS.

Trends Genet. 2013 Apr;29(4):263-71. doi: 10.1016/j.tig.2012.10.014. Epub 2012 Dec 4. Review.

PMID:
23218459
20.

Comparative genomics: a revolutionary tool for wine yeast strain development.

Borneman AR, Pretorius IS, Chambers PJ.

Curr Opin Biotechnol. 2013 Apr;24(2):192-9. doi: 10.1016/j.copbio.2012.08.006. Epub 2012 Sep 1. Review.

PMID:
22947601
21.

Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways.

Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ.

BMC Genomics. 2012 Aug 3;13:373. doi: 10.1186/1471-2164-13-373.

22.

De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499.

Curtin CD, Borneman AR, Chambers PJ, Pretorius IS.

PLoS One. 2012;7(3):e33840. doi: 10.1371/journal.pone.0033840. Epub 2012 Mar 28.

23.

Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae.

Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ.

PLoS One. 2012;7(1):e29626. doi: 10.1371/journal.pone.0029626. Epub 2012 Jan 3.

24.

The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins.

Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ.

FEMS Yeast Res. 2012 Feb;12(1):88-96. doi: 10.1111/j.1567-1364.2011.00773.x. Epub 2011 Dec 23.

25.

Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.

Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ.

Appl Microbiol Biotechnol. 2012 Feb;93(3):1175-84. doi: 10.1007/s00253-011-3622-7. Epub 2011 Oct 12.

PMID:
21989563
26.

Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine.

Bartowsky EJ, Borneman AR.

Appl Microbiol Biotechnol. 2011 Nov;92(3):441-7. doi: 10.1007/s00253-011-3546-2. Epub 2011 Aug 26. Review.

PMID:
21870044
27.

Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae.

Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ.

PLoS Genet. 2011 Feb 3;7(2):e1001287. doi: 10.1371/journal.pgen.1001287.

28.

Genotypic diversity in Oenococcus oeni by high-density microarray comparative genome hybridization and whole genome sequencing.

Borneman AR, Bartowsky EJ, McCarthy J, Chambers PJ.

Appl Microbiol Biotechnol. 2010 Mar;86(2):681-91. doi: 10.1007/s00253-009-2425-6. Epub 2010 Jan 29.

PMID:
20111862
29.

Comparative genome analysis of a Saccharomyces cerevisiae wine strain.

Borneman AR, Forgan AH, Pretorius IS, Chambers PJ.

FEMS Yeast Res. 2008 Nov;8(7):1185-95. doi: 10.1111/j.1567-1364.2008.00434.x. Epub 2008 Sep 4.

30.

Divergence of transcription factor binding sites across related yeast species.

Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus MR, Wang LY, Gerstein M, Snyder M.

Science. 2007 Aug 10;317(5839):815-9.

31.

Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms.

Borneman AR, Zhang ZD, Rozowsky J, Seringhaus MR, Gerstein M, Snyder M.

Funct Integr Genomics. 2007 Oct;7(4):335-45. Epub 2007 Jul 19.

PMID:
17638031
32.

Yeast systems biology: modelling the winemaker's art.

Borneman AR, Chambers PJ, Pretorius IS.

Trends Biotechnol. 2007 Aug;25(8):349-55. Epub 2007 Jun 27. Review.

PMID:
17590464
33.

TOS9 regulates white-opaque switching in Candida albicans.

Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, Seringhaus MR, Gerstein M, Yi S, Snyder M, Soll DR.

Eukaryot Cell. 2006 Oct;5(10):1674-87. Epub 2006 Sep 1.

34.

Target hub proteins serve as master regulators of development in yeast.

Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M.

Genes Dev. 2006 Feb 15;20(4):435-48. Epub 2006 Jan 31.

37.

Supplemental Content

Loading ...
Support Center