Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Insulin actions in the mesolimbic dopamine system.

Liu S, Borgland SL.

Exp Neurol. 2019 Jul 4;320:113006. doi: 10.1016/j.expneurol.2019.113006. [Epub ahead of print] Review.

PMID:
31279911
2.

Releasing the brake on eating.

Borgland SL.

Science. 2019 Jun 28;364(6447):1233-1234. doi: 10.1126/science.aay0204. No abstract available.

PMID:
31249046
3.

Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System.

Nettleton JE, Klancic T, Schick A, Choo AC, Shearer J, Borgland SL, Chleilat F, Mayengbam S, Reimer RA.

Nutrients. 2019 May 31;11(6). pii: E1248. doi: 10.3390/nu11061248.

4.

Hypothalamic control of homeostasis.

Borgland SL, Dayas C.

Neuropharmacology. 2019 Aug;154:1-3. doi: 10.1016/j.neuropharm.2019.05.029. Epub 2019 May 23. No abstract available.

PMID:
31129150
5.

Diversity in the lateral hypothalamic input to the ventral tegmental area.

Godfrey N, Borgland SL.

Neuropharmacology. 2019 Aug;154:4-12. doi: 10.1016/j.neuropharm.2019.05.014. Epub 2019 May 16. Review.

PMID:
31103620
6.

Dopaminergic modulation of pain signals in the medial prefrontal cortex: Challenges and perspectives.

Huang S, Borgland SL, Zamponi GW.

Neurosci Lett. 2019 May 29;702:71-76. doi: 10.1016/j.neulet.2018.11.043. Epub 2018 Nov 29. Review.

PMID:
30503912
7.

Insulin in the ventral tegmental area reduces cocaine-evoked dopamine in the nucleus accumbens in vivo.

Naef L, Seabrook L, Hsiao J, Li C, Borgland SL.

Eur J Neurosci. 2018 Nov 24. doi: 10.1111/ejn.14291. [Epub ahead of print]

PMID:
30471157
8.

Behavioral Effects of a Potential Novel TAAR1 Antagonist.

Lam VM, Mielnik CA, Baimel C, Beerepoot P, Espinoza S, Sukhanov I, Horsfall W, Gainetdinov RR, Borgland SL, Ramsey AJ, Salahpour A.

Front Pharmacol. 2018 Sep 4;9:953. doi: 10.3389/fphar.2018.00953. eCollection 2018.

9.

Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance.

Balsevich G, Sticht M, Bowles NP, Singh A, Lee TTY, Li Z, Chelikani PK, Lee FS, Borgland SL, Hillard CJ, McEwen BS, Hill MN.

Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7605-7610. doi: 10.1073/pnas.1802251115. Epub 2018 Jul 2.

10.

Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations.

Thomas TS, Baimel C, Borgland SL.

Br J Pharmacol. 2018 Jul;175(14):2825-2833. doi: 10.1111/bph.13993. Epub 2017 Sep 26. Review.

11.

Erratum: Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents.

Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M, Shankara JV, Stemkowski PL, Baimoukhametova D, Bains JS, Antle MC, Zamponi GW, Cahill CM, Borgland SL, DeKoninck Y, Trang T.

Nat Med. 2017 Jun 6;23(6):788. doi: 10.1038/nm0617-788c. No abstract available.

12.

Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.

Lau BK, Cota D, Cristino L, Borgland SL.

Neuropharmacology. 2017 Sep 15;124:38-51. doi: 10.1016/j.neuropharm.2017.05.033. Epub 2017 Jun 1. Review.

PMID:
28579186
13.

Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse.

Baimel C, Borgland SL.

Curr Top Behav Neurosci. 2017;33:283-304. doi: 10.1007/7854_2016_44.

PMID:
28303403
14.

Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning.

Mills F, Globa AK, Liu S, Cowan CM, Mobasser M, Phillips AG, Borgland SL, Bamji SX.

Nat Neurosci. 2017 Apr;20(4):540-549. doi: 10.1038/nn.4503. Epub 2017 Feb 13.

15.

Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons.

Baimel C, Lau BK, Qiao M, Borgland SL.

Cell Rep. 2017 Feb 7;18(6):1346-1355. doi: 10.1016/j.celrep.2017.01.030.

16.

Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents.

Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M, Shankara JV, Stemkowski PL, Baimoukhametova D, Bains JS, Antle MC, Zamponi GW, Cahill CM, Borgland SL, De Koninck Y, Trang T.

Nat Med. 2017 Mar;23(3):355-360. doi: 10.1038/nm.4281. Epub 2017 Jan 30. Erratum in: Nat Med. 2017 Jun 6;23 (6):788.

17.

Obesity-Induced Structural and Neuronal Plasticity in the Lateral Orbitofrontal Cortex.

Thompson JL, Drysdale M, Baimel C, Kaur M, MacGowan T, Pitman KA, Borgland SL.

Neuropsychopharmacology. 2017 Jun;42(7):1480-1490. doi: 10.1038/npp.2016.284. Epub 2017 Jan 2.

18.

Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA.

Liu S, Globa AK, Mills F, Naef L, Qiao M, Bamji SX, Borgland SL.

Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2520-5. doi: 10.1073/pnas.1515724113. Epub 2016 Feb 16.

19.

Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

Naef L, Pitman KA, Borgland SL.

CNS Spectr. 2015 Dec;20(6):574-83. doi: 10.1017/S1092852915000693. Epub 2015 Oct 30. Review.

PMID:
26514168
20.

Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility.

Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL.

Cereb Cortex. 2016 Dec;26(12):4524-4539. doi: 10.1093/cercor/bhv222. Epub 2015 Sep 23.

PMID:
26405054
21.

Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet.

Pitman KA, Borgland SL.

Pharmacol Ther. 2015 Oct;154:110-9. doi: 10.1016/j.pharmthera.2015.07.005. Epub 2015 Jul 26. Review.

PMID:
26213108
22.

Orexin Signaling in the VTA Gates Morphine-Induced Synaptic Plasticity.

Baimel C, Borgland SL.

J Neurosci. 2015 May 6;35(18):7295-303. doi: 10.1523/JNEUROSCI.4385-14.2015.

23.

Isovaline does not activate GABA(B) receptor-coupled potassium currents in GABA(B) expressing AtT-20 cells and cultured rat hippocampal neurons.

Pitman KA, Borgland SL, MacLeod B, Puil E.

PLoS One. 2015 Feb 23;10(2):e0118497. doi: 10.1371/journal.pone.0118497. eCollection 2015.

24.

Regulation of the mesolimbic dopamine circuit by feeding peptides.

Liu S, Borgland SL.

Neuroscience. 2015 Mar 19;289:19-42. doi: 10.1016/j.neuroscience.2014.12.046. Epub 2015 Jan 10. Review.

PMID:
25583635
25.

GABA(B) modulation of dopamine release in the nucleus accumbens core.

Pitman KA, Puil E, Borgland SL.

Eur J Neurosci. 2014 Nov;40(10):3472-80. doi: 10.1111/ejn.12733. Epub 2014 Sep 17.

PMID:
25229321
26.

Sustained N-methyl-d-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling.

Ferris MJ, Milenkovic M, Liu S, Mielnik CA, Beerepoot P, John CE, España RA, Sotnikova TD, Gainetdinov RR, Borgland SL, Jones SR, Ramsey AJ.

Eur J Neurosci. 2014 Jul;40(1):2255-63. doi: 10.1111/ejn.12594. Epub 2014 Apr 23.

27.

Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area.

Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, Kamenecka TM, Borgland SL, Kenny PJ, Carlezon WA Jr.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1648-55. doi: 10.1073/pnas.1315542111. Epub 2014 Mar 24.

28.

Orexin/hypocretin role in reward: implications for opioid and other addictions.

Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL.

Br J Pharmacol. 2015 Jan;172(2):334-48. doi: 10.1111/bph.12639. Epub 2014 Jul 1. Review.

29.

Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity.

Brigidi GS, Sun Y, Beccano-Kelly D, Pitman K, Mobasser M, Borgland SL, Milnerwood AJ, Bamji SX.

Nat Neurosci. 2014 Apr;17(4):522-32. doi: 10.1038/nn.3657. Epub 2014 Feb 23.

30.

Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia.

Liu S, Labouèbe G, Karunakaran S, Clee SM, Borgland SL.

Nutr Diabetes. 2013 Dec 16;3:e97. doi: 10.1038/nutd.2013.38.

31.

Food for thought: hormonal, experiential, and neural influences on feeding and obesity.

Karatsoreos IN, Thaler JP, Borgland SL, Champagne FA, Hurd YL, Hill MN.

J Neurosci. 2013 Nov 6;33(45):17610-6. doi: 10.1523/JNEUROSCI.3452-13.2013. Review.

32.

Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.

Labouèbe G, Liu S, Dias C, Zou H, Wong JC, Karunakaran S, Clee SM, Phillips AG, Boutrel B, Borgland SL.

Nat Neurosci. 2013 Mar;16(3):300-8. doi: 10.1038/nn.3321. Epub 2013 Jan 27.

33.

Presynaptic leptin action suppresses excitatory synaptic transmission onto ventral tegmental area dopamine neurons.

Thompson JL, Borgland SL.

Biol Psychiatry. 2013 May 1;73(9):860-8. doi: 10.1016/j.biopsych.2012.10.026. Epub 2013 Jan 7.

PMID:
23305991
34.

Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell.

Patyal R, Woo EY, Borgland SL.

Front Behav Neurosci. 2012 Nov 28;6:82. doi: 10.3389/fnbeh.2012.00082. eCollection 2012.

35.

Hypocretin modulation of drug-induced synaptic plasticity.

Baimel C, Borgland SL.

Prog Brain Res. 2012;198:123-31. doi: 10.1016/B978-0-444-59489-1.00008-2. Review.

PMID:
22813972
36.

Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake.

Mebel DM, Wong JC, Dong YJ, Borgland SL.

Eur J Neurosci. 2012 Aug;36(3):2336-46. doi: 10.1111/j.1460-9568.2012.08168.x. Epub 2012 Jun 20.

37.

Cocaine and nicotine research illustrates a range of hypocretin mechanisms in addiction.

Baimel C, Borgland SL, Corrigall W.

Vitam Horm. 2012;89:291-313. doi: 10.1016/B978-0-12-394623-2.00016-0. Review.

PMID:
22640620
38.

Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference.

McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, España RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S.

Behav Brain Res. 2011 Nov 20;225(1):348-57. doi: 10.1016/j.bbr.2011.07.036. Epub 2011 Jul 26. Review.

39.

A role for hypocretin/orexin in motivation.

Thompson JL, Borgland SL.

Behav Brain Res. 2011 Mar 1;217(2):446-53. doi: 10.1016/j.bbr.2010.09.028. Review.

PMID:
20920531
40.

Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential.

Borgland SL, Labouèbe G.

Neuropsychopharmacology. 2010 Jan;35(1):353-4. doi: 10.1038/npp.2009.119. No abstract available.

41.

Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction.

Borgland SL, Ungless MA, Bonci A.

Brain Res. 2010 Feb 16;1314:139-44. doi: 10.1016/j.brainres.2009.10.068. Epub 2009 Nov 3. Review.

PMID:
19891960
42.

Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers.

Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A.

J Neurosci. 2009 Sep 9;29(36):11215-25. doi: 10.1523/JNEUROSCI.6096-08.2009.

43.

Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons.

Borgland SL, Storm E, Bonci A.

Eur J Neurosci. 2008 Oct;28(8):1545-56. doi: 10.1111/j.1460-9568.2008.06397.x. Epub 2008 Sep 10.

PMID:
18793323
44.

Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats.

Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE.

Psychopharmacology (Berl). 2008 Jul;199(1):109-17. doi: 10.1007/s00213-008-1136-5. Epub 2008 May 10.

45.

Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area.

Sarti F, Borgland SL, Kharazia VN, Bonci A.

Eur J Neurosci. 2007 Aug;26(3):749-56.

PMID:
17686047
46.

Addiction and arousal: alternative roles of hypothalamic peptides.

de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R.

J Neurosci. 2006 Oct 11;26(41):10372-5. Review.

47.

Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine.

Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A.

Neuron. 2006 Feb 16;49(4):589-601.

48.

Ethanol alters trafficking and functional N-methyl-D-aspartate receptor NR2 subunit ratio via H-Ras.

Suvarna N, Borgland SL, Wang J, Phamluong K, Auberson YP, Bonci A, Ron D.

J Biol Chem. 2005 Sep 9;280(36):31450-9. Epub 2005 Jul 11.

50.

Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors.

Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ.

J Biol Chem. 2003 May 23;278(21):18776-84. Epub 2003 Mar 17.

Supplemental Content

Loading ...
Support Center